User Documentation for CVODES v5.8.0
(SUNDIALS v5.8.0)

Alan C. Hindmarsh!, Radu Serban', Cody J. Balos!,
David J. Gardner?, Daniel R. Reynolds?, and Carol S. Woodward*

LCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory
2Department of Mathematics, Southern Methodist University

September 30, 2021

aials

<
S

Vo)

UCRL-SM-208111

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The cur-
rent SUNDIALS team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R.
Reynolds, and Carol S. Woodward. We thank Radu Serban for significant and critical past contribu-
tions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Peter N. Brown,
George Byrne, Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee,
Shelby L. Lockhart, John Loffeld, Daniel McGreer, Slaven Peles, Cosmin Petra, H. Hunter Schwartz,
Jean M. Sexton, Dan Shumaker, Steve G. Smith, Allan G. Taylor, Hilari C. Tiedeman, Chris White,
Ting Yan, and Ulrike M. Yang.

Contents

List of Tables

List of Figures

1

Introduction

1.1 Historical Background e
1.2 Changes from previous versions
1.3 Reading this User Guide
1.4 SUNDIALS Release License i vttt i e et e e

Mathematical Considerations

2.1 IVP solution e
2.2 Preconditioning
2.3 BDF stability limit detection oL L
2.4 Rootfinding L.
2.5 Pure quadrature integration oL Lo Lo
2.6 Forward sensitivity analysis L Lo
2.7 Adjoint sensitivity analysis
2.8 Second-order sensitivity analysis L oL o

Code Organization

3.1 SUNDIALS organization e
3.2 CVODES organization it e
Using CVODES for IVP Solution

4.1 Access to library and header files
4.2 Data Types o e e e e
4.3 Header files
4.4 A skeleton of the user’s main program L Lo
4.5 User-callable functions L
4.6 User-supplied functions Lo
4.7 Integration of pure quadrature equations
4.8 Preconditioner modules
Using CVODES for Forward Sensitivity Analysis

5.1 A skeleton of the user’s main program,
5.2 User-callable routines for forward sensitivity analysis
5.3 User-supplied routines for forward sensitivity analysis
5.4 Integration of quadrature equations depending on forward sensitivities
5.5 Note on using partial error controlo L Lo

ix

xi

— =

17
19

21
21
25
26
27
28
28
31
34

37
37
38

41
41
42
43
44
48
86
94
101

6 Using CVODES for Adjoint Sensitivity Analysis 143

6.1 A skeleton of the user’s main program 143
6.2 User-callable functions for adjoint sensitivity analysis 147
6.3 User-supplied functions for adjoint sensitivity analysis 167
6.4 Using CVODES preconditioner modules for the backward problem 179
7 Using CVODES for Fortran Applications 183
7.1 CVODES Fortran 2003 Interface Module, 183
8 CVODES Features for GPU Accelerated Computing 191
8.1 SUNDIALS GPU Programming Model 191
8.2 Steps for Using GPU Accelerated SUNDIALS 192
9 Description of the NVECTOR module 193
9.1 The NVECTOR API e 193
9.2 NVECTOR functions used by CVODES 214
9.3 The NVECTOR_SERIAL implementation 215
9.4 The NVECTOR_PARALLEL implementation 220
9.5 The NVECTOR_OPENMP implementation 226
9.6 The NVECTOR_PTHREADS implementation 231
9.7 The NVECTOR_PARHYP implementation 236
9.8 The NVECTOR_PETSC implementation 240
9.9 The NVECTOR_CUDA implementation 243
9.10 The NVECTOR_HIP implementation 250
9.11 The NVECTOR_RAJA implementation 256
9.12 The NVECTOR_SYCL implementation 261
9.13 The NVECTOR_OPENMPDEYV implementation 267
9.14 The NVECTOR_TRILINOS implementation 271
9.15 The NVECTOR_MANYVECTOR implementation 273
9.16 The NVECTOR_MPIMANYVECTOR implementation 277
9.17 The NVECTOR_MPIPLUSX implementation 282
9.18 NVECTOR Examples 284
10 Description of the SUNMatrix module 289
10.1 The SUNMatrix AP 289
10.2 SUNMatrix functions used by CVODES 295
10.3 The SUNMatrix_Dense implementation 296
10.4 The SUNMatrix_Band implementation 299
10.5 The SUNMatrix_Sparse implementation 306
10.6 The SUNMatrix SLUNRIloc implementation 313
10.7 The SUNMatrix_cuSparse implementation 315
10.8 The SUNMATRIX_MAGMADENSE implementation 320
10.9 The SUNMATRIX_ONEMKLDENSE implementation 323
11 Description of the SUNLinearSolver module 329
11.1 The SUNLinearSolver API 330
11.2 Compatibility of SUNLinearSolver modules 339
11.3 Implementing a custom SUNLinearSolver module 340
11.4 CVODES SUNLinearSolver interface 342
11.5 The SUNLinearSolver_Dense implementation 344
11.6 The SUNLinearSolver_Band implementation 347
11.7 The SUNLinearSolver_LapackDense implementation 349
11.8 The SUNLinearSolver_LapackBand implementation 352
11.9 The SUNLinearSolver KLU implementation 354
11.10The SUNLinearSolver_SuperLUDIST implementation 361

vi

11.11The SUNLinearSolver_SuperLUMT implementation 365

11.12The SUNLinearSolver_cuSolverSp_batchQR implementation 369
11.13The SUNLinearSolver_MagmaDense implementation 371
11.14The SUNLinearSolver_OneMklDense Implementation 373
11.15The SUNLinearSolver SPGMR implementation 374
11.16The SUNLinearSolver SPFGMR implementation 381
11.17The SUNLinearSolver SPBCGS implementation 389
11.18The SUNLinearSolver SPTFQMR implementation 395
11.19The SUNLinearSolver_ PCG implementation 401
11.20SUNLinearSolver Examples o 408
12 Description of the SUNNonlinearSolver module 411
12.1 The SUNNonlinearSolver APT 411
12.2 CVODES SUNNonlinearSolver interface 422
12.3 The SUNNonlinearSolver Newton implementation 426
12.4 The SUNNonlinearSolver_FixedPoint implementation 430
12.5 The SUNNonlinearSolver_PetscSNES implementation. 435
13 Description of the SUNMemory module 439
13.1 The SUNMemoryHelper APT 439
13.2 The SUNMemoryHelper_Cuda implementation 443
13.3 The SUNMemoryHelper_Hip implementation 444
13.4 The SUNMemoryHelper_Sycl implementation 445
A SUNDIALS Package Installation Procedure 449
A.1 CMake-based installation 450
A.2 Building and Running Examples L oL o 462
A.3 Configuring, building, and installing on Windows 462
A.4 Installed libraries and exported header files 463
B CVODES Constants 471
B.1 CVODES input constants 471
B.2 CVODES output constants L 471
C SUNDIALS Release History 475
Bibliography 477
Index 481

vii

List of Tables

4.1
4.2
4.3

5.1
5.2

7.1
7.2

8.1

9.1
9.2

10.1
10.2
10.3
10.4

11.1
11.2

11.3

12.1

SUNDIALS linear solver interfaces and vector implementations that can be used for each. 47

Optional inputs for CVODES and CVLS v i vttt et 56
Optional outputs from CVODES, CVLS, and CVDIAG« v v v v v v v v o n 71
Forward sensitivity optional inputs L o Lo 123
Forward sensitivity optional outputs oL 125
Summary of Fortran 2003 interfaces for shared SUNDIALS modules. 184
C/Fortran 2003 Equivalent Types o v v v i it i 185
List of SUNDIALS GPU Enabled Modules. 192
Vector Identifications associated with vector kernels supplied with SUNDIALS. 210
List of vector functions usage by CVODES code modules 288
Description of the SUNMatrix returncodes 292
Identifiers associated with matrix kernels supplied with SUNDIALS. 293
SUNDIALS matrix interfaces and vector implementations that can be used for each. . . 293
List of matrix functions usage by CVODES code modules 295
Description of the SUNLinearSolver error codes 337
SUNDIALS matrix-based linear solvers and matrix implementations that can be used for

each. . . . L e e 339
List of linear solver function usage in the CVLS interface 343
Description of the SUNNonlinearSolver return codes. 418
SUNDIALS libraries and header files 465
Release History o . e 475

ix

List of Figures

2.1 Tllustration of the checkpointing algorithm for generation of the forward solution during

the integration of the adjoint system. 33
3.1 High-level diagram of the SUNDIALS suite. 37
3.2 Directory structure of the SUNDIALS source tree. 38
3.3 Overall structure diagram of the CVODES package 39
10.1 Diagram of the storage for a SUNMATRIX_BAND object 301
10.2 Diagram of the storage for a compressed-sparse-column matrix 308
A.1 Initial cemake configuration screeno oL oL 451
A.2 Changing the instdir e 452

xi

Chapter 1

Introduction

CVODES [55] is part of a software family called SUNDIALS: SUite of Nonlinear and DIfferential/AL-
gebraic equation Solvers [36]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants
of these with sensitivity analysis capabilities. CVODES is a solver for stiff and nonstiff initial value
problems (IVPs) for systems of ordinary differential equation (ODEs). In addition to solving stiff and
nonstiff ODE systems, CVODES has sensitivity analysis capabilities, using either the forward or the
adjoint methods.

1.1 Historical Background

FORTRAN solvers for ODE initial value problems are widespread and heavily used. Two solvers that
have been written at LLNL in the past are VODE [13] and VODPK [16]. VODE is a general purpose solver
that includes methods for both stiff and nonstiff systems, and in the stiff case uses direct methods
(full or banded) for the solution of the linear systems that arise at each implicit step. Externally,
VODE is very similar to the well known solver LSODE [51]. VODPK is a variant of VODE that uses
a preconditioned Krylov (iterative) method, namely GMRES, for the solution of the linear systems.
VODPK is a powerful tool for large stiff systems because it combines established methods for stiff
integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of
the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [14]. The
capabilities of both VODE and VODPK have been combined in the C-language package CVODE [21].

At present, CVODE may utilize a variety of Krylov methods provided in SUNDIALS that can be used
in conjuction with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [54],
FGMRES (Flexible Generalized Minimum RESidual) [53], Bi-CGStab (Bi-Conjugate Gradient Stabi-
lized) [58], TFQMR (Transpose-Free Quasi-Minimal Residual) [29], and PCG (Preconditioned Con-
jugate Gradient) [31] linear iterative methods. As Krylov methods, these require almost no matrix
storage for solving the Newton equations as compared to direct methods. However, the algorithms
allow for a user-supplied preconditioner matrix, and for most problems preconditioning is essential for
an efficient solution. For very large stiff ODE systems, the Krylov methods are preferable over direct
linear solver methods, and are often the only feasible choice. Among the Krylov methods in SUNDIALS,
we recommend GMRES as the best overall choice. However, users are encouraged to compare all op-
tions, especially if encountering convergence failures with GMRES. Bi-CGStab and TFQMR, have an
advantage in storage requirements, in that the number of workspace vectors they require is fixed, while
that number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage
in that it is designed to support preconditioners that vary between iterations (e.g. iterative methods).
PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

In the process of translating the VODE and VODPK algorithms into C, the overall CVODE organi-
zation has been changed considerably. One key feature of the CVODE organization is that the linear
system solvers comprise a layer of code modules that is separated from the integration algorithm,
allowing for easy modification and expansion of the linear solver array. A second key feature is a

2 Introduction

separate module devoted to vector operations; this facilitated the extension to multiprosessor envi-
ronments with minimal impacts on the rest of the solver, resulting in PVODE [18], the parallel variant
of CVODE.

CVODES is written with a functionality that is a superset of that of the pair CVODE/PVODE.
Sensitivity analysis capabilities, both forward and adjoint, have been added to the main integrator.
Enabling forward sensititivity computations in CVODES will result in the code integrating the so-
called sensitivity equations simultaneously with the original IVP, yielding both the solution and its
sensitivity with respect to parameters in the model. Adjoint sensitivity analysis, most useful when
the gradients of relatively few functionals of the solution with respect to many parameters are sought,
involves integration of the original IVP forward in time followed by the integration of the so-called
adjoint equations backward in time. CVODES provides the infrastructure needed to integrate any
final-condition ODE dependent on the solution of the original IVP (in particular the adjoint system).

Development of CVODES was concurrent with a redesign of the vector operations module across
the SUNDIALS suite. The key feature of the NVECTOR module is that it is written in terms of abstract
vector operations with the actual vector functions attached by a particular implementation (such as
serial or parallel) of NVECTOR. This allows writing the SUNDIALS solvers in a manner independent of
the actual NVECTOR implementation (which can be user-supplied), as well as allowing more than one
NVECTOR module to be linked into an executable file. SUNDIALS (and thus CVODES) is supplied with
serial, MPI-parallel, and both OpenMP and Pthreads thread-parallel NVECTOR implementations.

There were several motivations for choosing the C language for CVODE, and later for CVODES.
First, a general movement away from FORTRAN and toward C in scientific computing was apparent.
Second, the pointer, structure, and dynamic memory allocation features in C are extremely useful in
software of this complexity. Finally, we prefer C over C++ for CVODES because of the wider availability
of C compilers, the potentially greater efficiency of C, and the greater ease of interfacing the solver
to applications written in extended FORTRAN.

1.2 Changes from previous versions

Changes in v5.8.0

The RAJA NVECTOR implementation has been updated to support the SYCL backend in addition to
the CUDA and HIP backend. Users can choose the backend when configuring SUNDIALS by using
the SUNDIALS RAJA BACKENDS CMake variable. This module remains experimental and is subject to
change from version to version.

A new SUNMATRIX and SUNLINSOL implementation were added to interface with the Intel oneAPI
Math Kernel Library (oneMKL). Both the matrix and the linear solver support general dense linear
systems as well as block diagonal linear systems. See Chapter 11.14 for more details. This module is
experimental and is subject to change from version to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess, to indicate
that the next call to SUNlinSolSolve will be made with a zero initial guess. SUNLinearSolver
implementations that do not use the SUNLinSolNewEmpty constructor will, at a minimum, need set
the setzeroguess function pointer in the linear solver ops structure to NULL. The SUNDIALS iterative
linear solver implementations have been updated to leverage this new set function to remove one dot
product per solve.

CVODES now supports a new “matrix-embedded” SUNLINSOL type. This type supports user-
supplied SUNLINSOL implementations that set up and solve the specified linear system at each linear
solve call. Any matrix-related data structures are held internally to the linear solver itself, and are
not provided by the SUNDIALS package.

Added the function CVodeSetN1lsRhsFn to supply an alternative right-hand side function for use
within nonlinear system function evaluations.

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to find_package.
The exported targets no longer have IMPORTED _GLOBAL set.

A bug was fixed in SUNMatCopyOps where the matrix-vector product setup function pointer was
not copied.

1.2 Changes from previous versions 3

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess
and a solution scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR
as standalone solvers as all SUNDIALS packages utilize a zero initial guess.

Changes in v5.7.0

A new NVECTOR implementation based on the SYCL abstraction layer has been added targeting Intel
GPUs. At present the only sYCL compiler supported is the DPC++ (Intel oneAPI) compiler. See
Section 9.12 for more details. This module is considered experimental and is subject to major changes
even in minor releases.

A new SUNMATRIX and SUNLINSOL implementation were added to interface with the MAGMA
linear algebra library. Both the matrix and the linear solver support general dense linear systems as
well as block diagonal linear systems, and both are targeted at GPUs (AMD or NVIDIA). See Section
11.13 for more details.

Changes in v5.6.1

Fixed a bug in the SUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and
SUNDIALS_RAJA _BACKENDS options were not provided.
Fixed some compiler warnings when using the IBM XL compilers.

Changes in v5.6.0

A new NVECTOR implementation based on the AMD ROCm HIP platform has been added. This
vector can target NVIDIA or AMD GPUs. See 9.10 for more details. This module is considered
experimental and is subject to change from version to version.

The RAJA NVECTOR implementation has been updated to support the HIP backend in addi-
tion to the CUDA backend. Users can choose the backend when configuring SUNDIALS by using
the SUNDIALS_RAJA_BACKENDS CMake variable. This module remains experimental and is subject to
change from version to version.

A new optional operation, N_VGetDeviceArrayPointer, was added to the N_Vector API. This
operation is useful for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA
N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR imple-
mentations no longer require the SUNDIALS CUDA N_Vector. Instead, they require that the vec-
tor utilized provides the N_VGetDeviceArrayPointer operation, and that the pointer returned by
N_VGetDeviceArrayPointer is a valid CUDA device pointer.

Changes in v5.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see
deprecation warnings, but otherwise the changes should be fully backwards compatible for almost all
users. SUNDIALS now exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

Changes in v5.4.0

Added the function CVodeSetLSNormFactor to specify the factor for converting between integrator
tolerances (WRMS norm) and linear solver tolerances (L2 norm) i.e., tol L2 = nrmfac * tol _WRMS.
Added new functions CVodeComputeState, and CVodeGetNonlinearSystemData which advanced
users might find useful if providing a custom SUNNonlinSolSysFn.
This change may cause an error in existing user code. The CVodeF function for forward
integration with checkpointing is now subject to a restriction on the number of time steps allowed
to reach the output time. This is the same restriction applied to the CVode function. The default

4 Introduction

maximum number of steps is 500, but this may be changed using the CVodeSetMaxNumSteps function.
This change fixes a bug that could cause an infinite loop in the CVodeF function.

The expected behavior of SUNNonlinSolGetNumIters and SUNNonlinSolGetNumConvFails in the
SUNNONLINSOL API have been updated to specify that they should return the number of nonlinear
solver iterations and convergence failures in the most recent solve respectively rather than the cumu-
lative number of iterations and failures across all solves respectively. The API documentation and
SUNDIALS provided SUNNONLINSOL implementations have been updated accordingly. As before, the
cumulative number of nonlinear iterations may be retreived by calling CVodeGetNumNonlinSolvIters,
CVodeGetSensNumNonlinSolvIters, CVodeGetStgrSensNumNonlinSolvIters, the cumulative num-
ber of failures with CVodeGetNumNonlinSolvConvFails, CVodeGetSensNumNonlinSolvConvFails,
CVodeGetStgrSensNumNonlinSolvConvFails, or both with CVodeGetNonlinSolvStats, CVodeGetSensNonlinSolvStats
CVodeGetStgrSensNonlinSolvStats.

A minor inconsistency in checking the Jacobian evaluation frequency has been fixed. As a result
codes using using a non-default Jacobian update frequency through a call to CVodeSetMaxStepsBetweenJac
will need to increase the provided value by 1 to achieve the same behavior as before. For greater clarity
the function CVodeSetMaxStepsBetweenJac has been deprecated and replaced with CVodeSetJacEvalFrequency.
Additionally, the function CVodeSetLSetupFrequency has been added to set the frequency of calls to
the linear solver setup function.

A new API, SUNMemoryHelper, was added to support GPU users who have complex memory
management needs such as using memory pools. This is paired with new constructors for the NVEC-
TOR_CUDA and NVECTOR_RAJA modules that accept a SUNMemoryHelper object. Refer to sections
8.1,13.1, 9.9 and 9.11 for more information.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the
update adds managed memory support to the NVECTOR_RAJA module. Users of the module will need
to update any calls to the N_VMake Raja function because that signature was changed. This module
remains experimental and is subject to change from version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.184. This update
changes the local ordinal type to always be an int.

Added support for CUDA v11.

Changes in v5.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function
is NULL or, if preconditioning is enabled, the PSolve function is NULL.

Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUSPARSE
modules. These modules remain experimental and are subject to change from version to version. In
addition, the NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equiva-
lent performance or some improvement, but a select few may observe minor performance degradation
with the default settings. Users are encouraged to contact the SUNDIALS team about any perfomance
changes that they notice.

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUN-
NONLINSOL_FIXEDPOINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must
be built with the CMake option SUNDIALS BUILD WITH MONITORING to use these capabilties.

Added the optional functions CVodeSetJacTimesRhsFn and CVodeSetJacTimesRhsFnB to specify
an alternative right-hand side function for computing Jacobian-vector products with the internal
difference quotient approximation.

Changes in v5.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL com-
piler. When building the Fortran 2003 interfaces with an XL compiler it is recommended to set
CMAKE_Fortran_COMPILER to £2003, x1£2003, or x1£2003_r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes
missing on some SUNDIALS API functions.

1.2 Changes from previous versions 5

Fixed a memory leak from not deallocating the ato1SminO and atolQSminO arrays.

Added a new SUNMatrix implementation, SUNMATRIX_CUSPARSE, that interfaces to the sparse ma-
trix implementation from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL_CUSOLVER_BATCHQR
linear solver has been updated to use this matrix, therefore, users of this module will need to update
their code. These modules are still considered to be experimental, thus they are subject to breaking
changes even in minor releases.

The functions CVodeSetLinearSolutionScaling and CVodeSetLinearSolutionScalingB were
added to enable or disable the scaling applied to linear system solutions with matrix-based linear
solvers to account for a lagged value of « in the linear system matrix I — vJ. Scaling is enabled by
default when using a matrix-based linear solver with BDF methods.

Changes in v5.1.0

Fixed a build system bug related to finding LAPACK/BLAS.

Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES
and PETSC_LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture
to compile for.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying
file pointers that are useful when using the Fortran 2003 interfaces.

Added support for constant damping to the SUNNonlinearSolver FixedPoint module when using
Anderson acceleration. See Section 12.4.1 and the SUNNonlinSolSetDamping FixedPoint function
for more details.

Changes in v5.0.0
Build system changes

e Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and
3.10 when CUDA or OpenMP with device offloading are enabled.

e The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify
builds as SUNDIALS packages do not use BLAS directly. For third party libraries that require
linking to BLAS, the path to the BLAS library should be included in the _LIBRARIES variable
for the third party library e.g., SUPERLUDIST _LIBRARIES when enabling SuperLU_DIST.

e Fixed a bug in the build system that prevented the NVECTOR_PTHREADS module from being
built.

NVECTOR module changes

e Two new functions were added to aid in creating custom NVECTOR objects. The constructor
N_VNewEmpty allocates an “empty” generic NVECTOR with the object’s content pointer and the
function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
NVECTOR API by ensuring only required operations need to be set. Additionally, the function
N_VCopyOps(w, v) has been added to copy the operation function pointers between vector ob-
jects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the NVECTOR API by ensuring all operations are
copied when cloning objects. See §9.1.6 for more details.

e Two new NVECTOR implementations, NVECTOR_-MANYVECTOR and NVECTOR_MPIMANYVECTOR,
have been created to support flexible partitioning of solution data among different processing
elements (e.g., CPU 4+ GPU) or for multi-physics problems that couple distinct MPI-based sim-
ulations together. This implementation is accompanied by additions to user documentation and
SUNDIALS examples. See §9.15 and §9.16 for more details.

6 Introduction

e One new required vector operation and ten new optional vector operations have been added to
the NVECTOR API. The new required operation, N_-VGetLength, returns the global length of an
N_Vector. The optional operations have been added to support the new
NVECTOR_MPIMANYVECTOR implementation. The operation N_VGetCommunicator must be im-
plemented by subvectors that are combined to create an NVECTOR_MPIMANYVECTOR, but is not
used outside of this context. The remaining nine operations are optional local reduction oper-
ations intended to eliminate unnecessary latency when performing vector reduction operations
(norms, etc.) on distributed memory systems. The optional local reduction vector operations
are N_VDotProdLocal, N_VMaxNormLocal, N_VMinLocal, N_VL1NormLocal, N_VWSqrSumLocal,
N_VWSqrSumMaskLocal, N_VInvTestLocal, N_VConstrMaskLocal, and N_VMinQuotientLocal.
If an NVECTOR implementation defines any of the local operations as NULL, then the NVEC-
TOR_MPIMANYVECTOR will call standard NVECTOR operations to complete the computation.
See §9.1.4 for more details.

e An additional NVECTOR implementation, NVECTOR_MPIPLUSX, has been created to support
the MPI4+X paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The
implementation is accompanied by additions to user documentation and SUNDIALS examples.
See §9.17 for more details.

e The * MPICuda and *_MPIRaja functions have been removed from the NVECTOR_CUDA and
NVECTOR_RAJA implementations respectively. Accordingly, the nvector mpicuda.h,
nvector mpiraja.h, libsundials nvecmpicuda.lib, and 1ibsundials _nvecmpicudaraja.lib
files have been removed. Users should use the NVECTOR_MPIPLUSX module coupled in conjunc-
tion with the NVECTOR_CUDA or NVECTOR_RAJA modules to replace the functionality. The
necessary changes are minimal and should require few code modifications. See the programs
in examples/ida/mpicuda and examples/ida/mpiraja for examples of how to use the NVEC-
TOR_MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules respectively.

e Fixed a memory leak in the NVECTOR_PETSC module clone function.

e Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default
stream should no longer see default stream synchronizations after memory transfers.

e Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom
allocate and free functions for the vector data array and internal reduction buffer. See §9.9.1
for more details.

e Added new Fortran 2003 interfaces for most NVECTOR modules. See Chapter 9 for more details
on how to use the interfaces.

e Added three new NVECTOR utility functions, FN_VGetVecAtIndexVectorArray,
FN_VSetVecAtIndexVectorArray, and FN_VNewVectorArray, for working with N_Vector arrays
when using the Fortran 2003 interfaces. See §9.1.6 for more details.

SUNMatrix module changes

e Two new functions were added to aid in creating custom SUNMATRIX objects. The constructor
SUNMatNewEmpty allocates an “empty” generic SUNMATRIX with the object’s content pointer and
the function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
SUNMATRIX API by ensuring only required operations need to be set. Additionally, the function
SUNMatCopyOps (A, B) has been added to copy the operation function pointers between matrix
objects. When used in clone routines for custom matrix objects these functions also will ease the
introduction of any new optional operations to the SUNMATRIX API by ensuring all operations
are copied when cloning objects. See §10.1.2 for more details.

1.2 Changes from previous versions 7

e A new operation, SUNMatMatvecSetup, was added to the SUNMATRIX API to perform any setup
necessary for computing a matrix-vector product. This operation is useful for SUNMATRIX imple-
mentations which need to prepare the matrix itself, or communication structures before perform-
ing the matrix-vector product. Users who have implemented custom SUNMATRIX modules will
need to at least update their code to set the corresponding ops structure member, matvecsetup,
to NULL. See §10.1.1 for more details.

e The generic SUNMATRIX API now defines error codes to be returned by SUNMATRIX operations.
Operations which return an integer flag indiciating success/failure may return different values
than previously. See §10.1.3 for more details.

e A new SUNMATRIX (and SUNLINSOL) implementation was added to facilitate the use of the
SuperLU_DIST library with SUNDIALS. See §10.6 for more details.

e Added new Fortran 2003 interfaces for most SUNMATRIX modules. See Chapter 10 for more
details on how to use the interfaces.

SUNLinearSolver module changes

e A new function was added to aid in creating custom SUNLINSOL objects. The constructor
SUNLinSolNewEmpty allocates an “empty” generic SUNLINSOL with the object’s content pointer
and the function pointers in the operations structure initialized to NULL. When used in the
constructor for custom objects this function will ease the introduction of any new optional
operations to the SUNLINSOL API by ensuring only required operations need to be set. See §11.3
for more details.

e The return type of the SUNLINSOL API function SUNLinSolLastFlag has changed from long
int to sunindextype to be consistent with the type used to store row indices in dense and
banded linear solver modules.

e Added a new optional operation to the SUNLINSOL API, SUNLinSolGetID, that returns a
SUNLinearSolver_ID for identifying the linear solver module.

e The SUNLINSOL API has been updated to make the initialize and setup functions optional.

e A new SUNLINSOL (and SUNMATRIX) implementation was added to facilitate the use of the
SuperLU_DIST library with SUNDIALS. See §11.10 for more details.

e Added a new SUNLINSOL implementation, SUNLinearSolver _cuSolverSp_batchQR, which lever-
ages the NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal
linear systems on NVIDIA GPUs. See §11.12 for more details.

e Added three new accessor functions to the SUNLINSOL_KLU module, SUNLinSol _KLUGetSymbolic,
SUNLinSol_KLUGetNumeric, and SUNLinSol_KLUGetCommon, to provide user access to the under-
lying KLU solver structures. See §11.9.2 for more details.

e Added new Fortran 2003 interfaces for most SUNLINSOL modules. See Chapter 11 for more
details on how to use the interfaces.

SUNNonlinearSolver module changes

e A new function was added to aid in creating custom SUNNONLINSOL objects. The constructor
SUNNonlinSolNewEmpty allocates an “empty” generic SUNNONLINSOL with the object’s content
pointer and the function pointers in the operations structure initialized to NULL. When used in
the constructor for custom objects this function will ease the introduction of any new optional
operations to the SUNNONLINSOL API by ensuring only required operations need to be set. See
§12.1.8 for more details.

Introduction

To facilitate the use of user supplied nonlinear solver convergence test functions the
SUNNonlinSolSetConvTestFn function in the SUNNONLINSOL API has been updated to take a
void* data pointer as input. The supplied data pointer will be passed to the nonlinear solver
convergence test function on each call.

The inputs values passed to the first two inputs of the SUNNonlinSolSolve function in the SUN-
NONLINSOL have been changed to be the predicted state and the initial guess for the correction to
that state. Additionally, the definitions of SUNNonlinSolLSetupFn and SUNNonlinSolLSolveFn
in the SUNNONLINSOL API have been updated to remove unused input parameters. For more
information on the nonlinear system formulation see §12.2 and for more details on the API
functions see Chapter 12.

Added a new SUNNONLINSOL implementation, SUNNONLINSOL_PETSCSNES, which interfaces to
the PETSc SNES nonlinear solver API. See §12.5 for more details.

Added new Fortran 2003 interfaces for most SUNNONLINSOL modules. See Chapter 12 for more
details on how to use the interfaces.

CVODES changes

Fixed a bug in the CVODES constraint handling where the step size could be set below the
minimum step size.

Fixed a bug in the CVODES nonlinear solver interface where the norm of the accumulated cor-
rection was not updated when using a non-default convergence test function.

Fixed a bug in the CVODES cvRescale function where the loops to compute the array of scalars
for the fused vector scale operation stopped one iteration early.

Fixed a bug where the CVodeF function would return the wrong flag under certrain cirumstances.

Fixed a bug where the CVodeF function would not return a root in CV_NORMAL_STEP mode if the
root occurred after the desired output time.

Removed extraneous calls to N_VMin for simulations where the scalar valued absolute tolerance,
or all entries of the vector-valued absolute tolerance array, are strictly positive. In this scenario,
CVODES will remove at least one global reduction per time step.

The CVLS interface has been updated to only zero the Jacobian matrix before calling a user-
supplied Jacobian evaluation function when the attached linear solver has type
SUNLINEARSOLVER _DIRECT.

A new linear solver interface function CVLsLinSysFn was added as an alternative method for
evaluating the linear system M =1 —~J.

Added new functions, CVodeGetCurrentGamma, CVodeGetCurrentState,
CVodeGetCurrentStateSens, and CVodeGetCurrentSensSolveIndex which may be useful to
users who choose to provide their own nonlinear solver implementations.

Added a Fortran 2003 interface to cVODES. See Chapter 7 for more details.

Changes in v4.1.0

An additional NVECTOR implementation was added for the Tpetra vector from the Trilinos library
to facilitate interoperability between SUNDIALS and Trilinos. This implementation is accompanied by
additions to user documentation and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

1.2 Changes from previous versions 9

The EXAMPLES_ENABLE RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA
enables all examples that use CUDA including the RAJA examples with a CUDA back end (if the
RAJA NVECTOR is enabled).

The implementation header file cvodes_impl.h is no longer installed. This means users who are
directly manipulating the CVodeMem structure will need to update their code to use CVODES’s public
APIL

Python is no longer required to run make test and make test_install.

Changes in v4.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.
Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The
symbols are now included in the CVODES library, libsundials_cvodes.

Changes in v4.0.1

No changes were made in this release.

Changes in v4.0.0

CVODES’ previous direct and iterative linear solver interfaces, CVDLS and CVSPILS, have been merged
into a single unified linear solver interface, CVLS, to support any valid SUNLINSOL module. This
includes the “DIRECT” and “ITERATIVE” types as well as the new “MATRIX_ITERATIVE” type.
Details regarding how CvLS utilizes linear solvers of each type as well as discussion regarding intended
use cases for user-supplied SUNLINSOL implementations are included in Chapter 11. All CVODES
example programs and the standalone linear solver examples have been updated to use the unified
linear solver interface.

The unified interface for the new cvLS module is very similar to the previous CvDLS and CVSPILS
interfaces. To minimize challenges in user migration to the new names, the previous C routine names
may still be used; these will be deprecated in future releases, so we recommend that users migrate to
the new names soon.

The names of all constructor routines for SUNDIALS-provided SUNLINSOL implementations have
been updated to follow the naming convention SUNLinSol_* where * is the name of the linear solver.
The new names are SUNLinSol Band, SUNLinSol Dense, SUNLinSol KLU, SUNLinSol _LapackBand,
SUNLinSol_LapackDense, SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR,
SUNLinSol_SPTFQMR, and SUNLinSol_SuperLUMT. Solver-specific “set” routine names have been simi-
larly standardized. To minimize challenges in user migration to the new names, the previous routine
names may still be used; these will be deprecated in future releases, so we recommend that users
migrate to the new names soon. All CVODES example programs and the standalone linear solver
examples have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth ar-
gument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through
the SUNNONLINSOL API. This API will ease the addition of new nonlinear solver options and allow for
external or user-supplied nonlinear solvers. The SUNNONLINSOL API and SUNDIALS provided modules
are described in Chapter 12 and follow the same object oriented design and implementation used by
the NVECTOR, SUNMATRIX, and SUNLINSOL modules. Currently two SUNNONLINSOL implementations
are provided, SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXEDPOINT. These replicate the previ-
ous integrator specific implementations of a Newton iteration and a fixed-point iteration (previously
referred to as a functional iteration), respectively. Note the SUNNONLINSOL_FIXEDPOINT module can
optionally utilize Anderson’s method to accelerate convergence. Example programs using each of these
nonlinear solver modules in a standalone manner have been added and all CVODES example programs
have been updated to use generic SUNNONLINSOL modules.

10 Introduction

With the introduction of SUNNONLINSOL modules, the input parameter iter to CVodeCreate
has been removed along with the function CVodeSetIterType and the constants CV_NEWTON and
CV_FUNCTIONAL. Instead of specifying the nonlinear iteration type when creating the CVODES memory
structure, CVODES uses the SUNNONLINSOL_NEWTON module implementation of a Newton iteration by
default. For details on using a non-default or user-supplied nonlinear solver see Chapters 4, 5, and 6.
CVODES functions for setting the nonlinear solver options (e.g., CVodeSetMaxNonlinIters) or getting
nonlinear solver statistics (e.g., CVodeGetNumNonlinSolvIters) remain unchanged and internally call
generic SUNNONLINSOL functions as needed.

Three fused vector operations and seven vector array operations have been added to the NVEC-
TOR API. These optional operations are disabled by default and may be activated by calling vector
specific routines after creating an NVECTOR (see Chapter 9 for more details). The new operations are
intended to increase data reuse in vector operations, reduce parallel communication on distributed
memory systems, and lower the number of kernel launches on systems with accelerators. The fused op-
erations are N_VLinearCombination, N_.VScaleAddMulti, and N_VDotProdMulti and the vector array
operations are N_VLinearCombinationVectorArray, N_-VScaleVectorArray, N_.VConstVectorArray,
N_VWrmsNormVectorArray, N_-VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray, and
N_VLinearCombinationVectorArray. If an NVECTOR implementation defines any of these operations
as NULL, then standard NVECTOR operations will automatically be called as necessary to complete the
computation.

Multiple updates to NVECTOR_CUDA were made:
e Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.
e Added N_VGetLocalLength Cuda to return the local vector length.
e Added N_VGetMPIComm Cuda to return the MPI communicator used.
e Removed the accessor functions in the namespace suncudavec.

e Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead
of an N_VectorContent_Cuda object.

e Added the ability to set the cudaStream_t used for execution of the NVECTOR_CUDA kernels.
See the function N_VSetCudaStreams_Cuda.

e Added N_VNewManaged_Cuda, N_VMakeManaged Cuda, and N_VIsManagedMemory_Cuda functions
to accommodate using managed memory with the NVECTOR_CUDA.

Multiple changes to NVECTOR_RAJA were made:

e Changed N_VGetLength Raja to return the global vector length instead of the local vector length.

Added N_VGetLocallLength Raja to return the local vector length.

Added N_VGetMPIComm Raja to return the MPI communicator used.
e Removed the accessor functions in the namespace suncudavec.

A new NVECTOR implementation for leveraging OpenMP 4.5+ device offloading has been added,
NVECTOR_OPENMPDEV. See §9.13 for more details.

Two changes were made in the CVODE/CVODES/ARKODE initial step size algorithm:
1. Fixed an efficiency bug where an extra call to the right hand side function was made.

2. Changed the behavior of the algorithm if the max-iterations case is hit. Before the algorithm
would exit with the step size calculated on the penultimate iteration. Now it will exit with the
step size calculated on the final iteration.

1.2 Changes from previous versions 11

Changes in v3.2.1

The changes in this minor release include the following:

e Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the
allocated vector data.

e Fixed library installation path for multiarch systems. This fix changes the default library instal-
lation path to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/1ib.
CMAKE_INSTALL_LIBDIR is automatically set, but is available as a CMake option that can modi-
fied.

Changes in v3.2.0

Support for optional inequality constraints on individual components of the solution vector has been
added to CVODE and CVODES. See Chapter 2 and the description of CVodeSetConstraints in §4.5.7.1
for more details. Use of CVodeSetConstraints requires the NVECTOR operations N_MinQuotient,
N_VConstrMask, and N_VCompare that were not previously required by CVODE and CVODES.

Fixed a thread-safety issue when using ajdoint sensitivity analysis.

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. arm-
clang) that did not define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when
using a GPU system. The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA NVECTOR library to libsundials_nveccudaraja.lib from
libsundials_nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA cur-
rently.

Several changes were made to the build system:
e CMake 3.1.3 is now the minimum required CMake version.

e Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the
SUNDIALS_INDEX_SIZE CMake option to select the sunindextype integer size.

e The native CMake FindMPI module is now used to locate an MPI installation.

e If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE <language> COMPILER can compile MPI programs before trying to locate and use an
MPI installation.

e The previous options for setting MPI compiler wrappers and the executable for running MPI
programs have been have been depreated. The new options that align with those used in native
CMake FindMPI module are MPI_C_COMPILER, MPI_CXX_COMPILER, MPI _Fortran COMPILER, and
MPIEXEC_EXECUTABLE.

e When a Fortran name-mangling scheme is needed (e.g., ENABLE LAPACK is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the in-
ferred or default scheme needs to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE
and SUNDIALS_F77_FUNC_UNDERSCORES can be used to manually set the name-mangling scheme
and bypass trying to infer the scheme.

e Parts of the main CMakeLists.txt file were moved to new files in the src and example directories
to make the CMake configuration file structure more modular.

12

Introduction

Changes in v3.1.2

The changes in this minor release include the following:

Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default
to locate shared libraries on OSX.

Fixed Windows specific problem where sunindextype was not correctly defined when using
64-bit integers for the SUNDIALS index type. On Windows sunindextype is now defined as the
MSVC basic type __int64.

Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types,
and fixed a bug in the full reinitialization approach where the sparse SUNMatrix pointer would
go out of scope on some architectures.

Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module
to more optimally handle the case where the target matrix contained sufficient storage for the
sum, but had the wrong sparsity pattern. The sum now occurs in-place, by performing the sum
backwards in the existing storage. However, it is still more efficient if the user-supplied Jacobian
routine allocates storage for the sum I + ~vJ manually (with zero entries if needed).

Added new example, cvRoberts_FSA_dns_Switch.c, which demonstrates switching on/off for-
ward sensitivity computations. This example came from the usage notes page of the SUNDIALS
website.

The misnamed function CVSpilsSetJacTimesSetupFnBS has been deprecated and replaced by
CVSpilsSetJacTimesBS. The deprecated function CVSpilsSetJacTimesSetupFnBS will be re-
moved in the next major release.

Changed the LICENSE install path to instdir/include/sundials.

Changes in v3.1.1

The changes in this minor release include the following:

Fixed a minor bug in the cvSLdet routine, where a return was missing in the error check for
three inconsistent roots.

Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was
called multiple times then the solver memory was reallocated (without being freed).

Updated KLU SUNLINSOL module to use a typedef for the precision-specific solve function to
be used (to avoid compiler warnings).

Added missing typecasts for some (void#) pointers (again, to avoid compiler warnings).
Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
Added missing #include <stdio.h> in NVECTOR and SUNMATRIX header files.

Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWrmsNormMask and revised
the RAJA NVECTOR implementation of N_VWrmsNormMask to work with mask arrays using values
other than zero or one. Replaced double with realtype in the RAJA vector test functions.

In addition to the changes above, minor corrections were also made to the example programs, build
system, and user documentation.

1.2 Changes from previous versions 13

Changes in v3.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g., N.VPrintFile_Serial).
Added make test and make test_install options to the build system for testing SUNDIALS after
building with make and installing with make install respectively.

Changes in v3.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs
have been updated. The goal of the redesign of these interfaces was to provide more encapsulation
and ease in interfacing custom linear solvers and interoperability with linear solver libraries. Specific
changes include:

e Added generic SUNMATRIX module with three provided implementations: dense, banded and
sparse. These replicate previous SUNDIALS Dls and Sls matrix structures in a single object-
oriented API.

e Added example problems demonstrating use of generic SUNMATRIX modules.

e Added generic SUNLINEARSOLVER module with eleven provided implementations: dense,
banded, LAPACK dense, LAPACK band, KLU, SuperLU_MT, SPGMR, SPBCGS, SPTFQMR,
SPFGMR, PCG. These replicate previous SUNDIALS generic linear solvers in a single object-
oriented APIL.

e Added example problems demonstrating use of generic SUNLINEARSOLVER modules.

e Expanded package-provided direct linear solver (Dls) interfaces and scaled, preconditioned, iter-
ative linear solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLINEARSOLVER
objects.

e Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND,
IDAKLU, ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils
interfaces and SUNLINEARSOLVER/SUNMATRIX modules. The exception is CVDIAG, a
diagonal approximate Jacobian solver available to CVODE and CVODES.

e Converted all SUNDIALS example problems to utilize new generic SUNMATRIX and SUNLIN-
EARSOLVER objects, along with updated Dls and Spils linear solver interfaces.

e Added Spils interface routines to ARKode, CVODE, CVODES, IDA and IDAS to allow spec-
ification of a user-provided ”JTSetup” routine. This change supports users who wish to set
up data structures for the user-provided Jacobian-times-vector (”JTimes”) routine, and where
the cost of one JTSetup setup per Newton iteration can be amortized between multiple JTimes
calls.

Two additional NVECTOR implementations were added — one for CUDA and one for RAJA vectors.
These vectors are supplied to provide very basic support for running on GPU architectures. Users are
advised that these vectors both move all data to the GPU device upon construction, and speedup will
only be realized if the user also conducts the right-hand-side function evaluation on the device. In
addition, these vectors assume the problem fits on one GPU. Further information about RAJA, users
are referred to th web site, https://software.llnl.gov/RAJA/. These additions are accompanied by
additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to
be a 32- or 64-bit integer data index type. sunindextype is defined to be int32_t or int64_t when
portable types are supported, otherwise it is defined as int or long int. The Fortran interfaces
continue to use long int for indices, except for their sparse matrix interface that now uses the new
sunindextype. This new flexible capability for index types includes interfaces to PETSc, hypre,
SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

14 Introduction

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE
have been changed to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It
is assumed that all necessary data for user-provided preconditioner operations will be allocated and
stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information
for use in Fortran programs.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release
version information at runtime.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is
a movement in scientific software to provide a foundation for the rapid and efficient production of
high-quality, sustainable extreme-scale scientific applications. More information can be found at,
https://xsdk.info.

In addition, numerous changes were made to the build system. These include the addition of
separate BLAS_ENABLE and BLAS_LIBRARIES CMake variables, additional error checking during CMake
configuration, minor bug fixes, and renaming CMake options to enable/disable examples for greater
clarity and an added option to enable/disable Fortran 77 examples. These changes included changing
EXAMPLES_ENABLE to EXAMPLES_ENABLE C, changing CXX_ENABLE to EXAMPLES ENABLE_CXX, changing
F90_ENABLE to EXAMPLES ENABLE F90, and adding an EXAMPLES ENABLE_F77 option.

A bug fix was made in CVodeFree to call 1free unconditionally (if non-NULL).

Corrections and additions were made to the examples, to installation-related files, and to the user
documentation.

Changes in v2.9.0

Two additional NVECTOR implementations were added — one for Hypre (parallel) ParVector vectors,
and one for PETSc vectors. These additions are accompanied by additions to various interface functions
and to user documentation.

Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR
module name.

A bug was fixed in the interpolation functions used in solving backward problems for adjoint
sensitivity analysis.

For each linear solver, the various solver performance counters are now initialized to 0 in both the
solver specification function and in solver 1init function. This ensures that these solver counters are
initialized upon linear solver instantiation as well as at the beginning of the problem solution.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done
to return integers from linear solver and preconditioner ’free’ functions.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various
additions and corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT,
including support for CSR format when using KLU.

In interpolation routines for backward problems, added logic to bypass sensitivity interpolation if
input sensitivity argument is NULL.

New examples were added for use of sparse direct solvers within sensitivity integrations and for
use of OpenMP.

Minor corrections and additions were made to the CVODES solver, to the examples, to installation-
related files, and to the user documentation.

Changes in v2.8.0

Two major additions were made to the linear system solvers that are available for use with the CVODES
solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second, an
interface to SuperLU_MT, the multi-threaded version of SuperLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the NVECTOR module. As part of
these additions, a sparse matrix (CSC format) structure was added to CVODES.

1.2 Changes from previous versions 15

Otherwise, only relatively minor modifications were made to the CVODES solver:

In cvRootfind, a minor bug was corrected, where the input array rootdir was ignored, and a line
was added to break out of root-search loop if the initial interval size is below the tolerance ttol.

In CVLapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an
illegal input error for DGBTRF/DGBTRS.

Some minor changes were made in order to minimize the differences between the sources for private
functions in CVODES and CVODE.

An option was added in the case of Adjoint Sensitivity Analysis with dense or banded Jacobian:
With a call to CVD1sSetDenseJacFnBS or CVD1sSetBandJacFnBS, the user can specify a user-supplied
Jacobian function of type CVDls***JacFnBS, for the case where the backward problem depends on
the forward sensitivities.

In CVodeQuadSensInit, the line cv.mem->cv_fQS_data = ... was corrected (missing Q).

In the User Guide, a paragraph was added in Section 6.2.1 on CVodeAdjReInit, and a paragraph
was added in Section 6.2.9 on CVodeGetAdjY. In the example cvsRoberts_ASAi_dns, the output was
revised to include the use of CVodeGetAdjY.

Two minor bugs were fixed regarding the testing of input on the first call to CVode — one involving
tstop and one involving the initialization of *tret.

For the Adjoint Sensitivity Analysis case in which the backward problem depends on the forward
sensitivities, options have been added to allow for user-supplied pset, psolve, and jtimes functions.

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,
SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and example programs.

In the example cvsHessian ASA FSA, an error was corrected in the function £B2: y2 in place of
y3 in the third term of Ith(yBdot,6).

Two new NVECTOR modules have been added for thread-parallel computing environments — one
for OpenMP, denoted NVECTOR_OPENMP, and one for Pthreads, denoted NVECTOR_PTHREADS.

With this version of SUNDIALS, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user
calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The function
NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays, respec-
tively. In a minor change to the user interface, the type of the index which in CVODES was changed
from long int to int.

Errors in the logic for the integration of backward problems were identified and fixed.

A large number of minor errors have been fixed. Among these are the following: In CVSetTqBDF,
the logic was changed to avoid a divide by zero. After the solver memory is created, it is set to zero
before being filled. In each linear solver interface function, the linear solver memory is freed on an error
return, and the *xFree function now includes a line setting to NULL the main memory pointer to the
linear solver memory. In the rootfinding functions CVRcheck1/CVRcheck2, when an exact zero is found,
the array glo of g values at the left endpoint is adjusted, instead of shifting the ¢ location tlo slightly.
In the installation files, we modified the treatment of the macro SUNDIALS _USE_GENERIC_MATH,
so that the parameter GENERIC_MATH_LIB is either defined (with no value) or not defined.

Changes in v2.6.0

Two new features related to the integration of ODE IVP problems were added in this release: (a) a
new linear solver module, based on BLAS and LAPACK for both dense and banded matrices, and (b)
an option to specify which direction of zero-crossing is to be monitored while performing rootfinding.

16 Introduction

This version also includes several new features related to sensitivity analysis, among which are: (a)
support for integration of quadrature equations depending on both the states and forward sensitivity
(and thus support for forward sensitivity analysis of quadrature equations), (b) support for simulta-
neous integration of multiple backward problems based on the same underlying ODE (e.g., for use in
an forward-over-adjoint method for computing second order derivative information), (c) support for
backward integration of ODEs and quadratures depending on both forward states and sensitivities
(e.g., for use in computing second-order derivative information), and (d) support for reinitialization
of the adjoint module.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization
of all linear solver modules into two families (besides the existing family of scaled preconditioned
iterative linear solvers, the direct solvers, including the new LAPACK-based ones, were also organized
into a direct family); (b) maintaining a single pointer to user data, optionally specified through a
Set-type function; and (c) a general streamlining of the preconditioner modules distributed with the
solver. Moreover, the prototypes of all functions related to integration of backward problems were
modified to support the simultaneous integration of multiple problems. All backward problems defined
by the user are internally managed through a linked list and identified in the user interface through
a unique identifier.

Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire SUNDIALS source tree (see §3.1).
At the user interface level, the main impact is in the mechanism of including SUNDIALS header files
which must now include the relative path (e.g. #include <cvode/cvode.h>). Additional changes
were made to the build system: all exported header files are now installed in separate subdirectories
of the instaltion include directory.

In the adjoint solver module, the following two bugs were fixed: in CVodeF the solver was sometimes
incorrectly taking an additional step before returning control to the user (in CV_NORMAL mode) thus
leading to a failure in the interpolated output function; in CVodeB, while searching for the current check
point, the solver was sometimes reaching outside the integration interval resulting in a segmentation
fault.

The functions in the generic dense linear solver (sundials_dense and sundials_smalldense) were
modified to work for rectangular m xn matrices (m < n), while the factorization and solution functions
were renamed to DenseGETRF/denGETRF and DenseGETRS/denGETRS, respectively. The factorization
and solution functions in the generic band linear solver were renamed BandGBTRF and BandGBTRS,
respectively.

Changes in v2.4.0

CVSPBCG and CVSPTFQMR modules have been added to interface with the Scaled Preconditioned
Bi-CGstab (sPBcGS) and Scaled Preconditioned Transpose-Free Quasi-Minimal Residual (SPTFQMR)
linear solver modules, respectively (for details see Chapter 4). At the same time, function type names
for Scaled Preconditioned Iterative Linear Solvers were added for the user-supplied Jacobian-times-
vector and preconditioner setup and solve functions.

A new interpolation method was added to the CvODES adjoint module. The function CVadjMalloc
has an additional argument which can be used to select the desired interpolation scheme.

The deallocation functions now take as arguments the address of the respective memory block
pointer.

To reduce the possibility of conflicts, the names of all header files have been changed by adding
unique prefixes (cvodes_ and sundials_). When using the default installation procedure, the header
files are exported under various subdirectories of the target include directory. For more details see
Appendix A.

1.3 Reading this User Guide 17

Changes in v2.3.0

A minor bug was fixed in the interpolation functions of the adjoint CVODES module.

Changes in v2.2.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. An optional user-supplied routine for setting the error weight vector was
added. Additionally, to resolve potential variable scope issues, all SUNDIALS solvers release user data
right after its use. The build systems has been further improved to make it more robust.

Changes in v2.1.2

A bug was fixed in the CVode function that was potentially leading to erroneous behaviour of the
rootfinding procedure on the integration first step.

Changes in v2.1.1

This CVODES release includes bug fixes related to forward sensitivity computations (possible loss of
accuray on a BDF order increase and incorrect logic in testing user-supplied absolute tolerances). In
addition, we have added the option of activating and deactivating forward sensitivity calculations on
successive CVODES runs without memory allocation/deallocation.

Other changes in this minor SUNDIALS release affect the build system.

Changes in v2.1.0

The major changes from the previous version involve a redesign of the user interface across the entire
SUNDIALS suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, CVODES now provides
a set of routines (with prefix CVodeSet) to change the default values for various quantities controlling
the solver and a set of extraction routines (with prefix CVodeGet) to extract statistics after return
from the main solver routine. Similarly, each linear solver module provides its own set of Set- and
Get-type routines. For more details see §4.5.7 and §4.5.9.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians,
preconditioner information, and sensitivity right hand sides) were simplified by reducing the number
of arguments. The same information that was previously accessible through such arguments can now
be obtained through Get-type functions.

The rootfinding feature was added, whereby the roots of a set of given functions may be computed
during the integration of the ODE system.

Installation of CVODES (and all of SUNDIALS) has been completely redesigned and is now based on
configure scripts.

1.3 Reading this User Guide

This user guide is a combination of general usage instructions. Specific example programs are provided
as a separate document. We expect that some readers will want to concentrate on the general instruc-
tions, while others will refer mostly to the examples, and the organization is intended to accommodate
both styles.

There are different possible levels of usage of cVODES. The most casual user, with a small IVP
problem only, can get by with reading §2.1, then Chapter 4 through §4.5.6 only, and looking at
examples in [56]. In addition, to solve a forward sensitivity problem the user should read §2.6,
followed by Chapter 5 through §5.2.5 only, and look at examples in [56].

In a different direction, a more expert user with an IVP problem may want to (a) use a package
preconditioner (§4.8), (b) supply his/her own Jacobian or preconditioner routines (§4.6), (¢) do mul-
tiple runs of problems of the same size (§4.5.10), (d) supply a new NVECTOR module (Chapter 9),

18 Introduction

or even (e) supply new SUNLINSOL and/or SUNMATRIX modules (Chapters 10 and 11). An advanced
user with a forward sensitivity problem may also want to (a) provide his/her own sensitivity equa-
tions right-hand side routine (§5.3), (b) perform multiple runs with the same number of sensitivity
parameters (§5.2.1), or (¢) extract additional diagnostic information (§5.2.5). A user with an adjoint
sensitivity problem needs to understand the IVP solution approach at the desired level and also go
through §2.7 for a short mathematical description of the adjoint approach, Chapter 6 for the usage of
the adjoint module in CVODES, and the examples in [56].
The structure of this document is as follows:

e In Chapter 2, we give short descriptions of the numerical methods implemented by CVODES for
the solution of initial value problems for systems of ODEs, continue with short descriptions of
preconditioning (§2.2), stability limit detection (§2.3), and rootfinding (§2.4), and conclude with
an overview of the mathematical aspects of sensitivity analysis, both forward (§2.6) and adjoint

(§2.7).

e The following chapter describes the structure of the SUNDIALS suite of solvers (§3.1) and the
software organization of the CVODES solver (§3.2).

e Chapter 4 is the main usage document for CVODES for simulation applications. It includes a
complete description of the user interface for the integration of ODE initial value problems.
Readers that are not interested in using CVODES for sensitivity analysis can then skip the next
two chapters.

e Chapter 5 describes the usage of CVODES for forward sensitivity analysis as an extension of its
IVP integration capabilities. We begin with a skeleton of the user main program, with emphasis
on the steps that are required in addition to those already described in Chapter 4. Following
that we provide detailed descriptions of the user-callable interface routines specific to forward
sensitivity analysis and of the additonal optional user-defined routines.

e Chapter 6 describes the usage of CVODES for adjoint sensitivity analysis. We begin by describing
the cVODES checkpointing implementation for interpolation of the original IVP solution during
integration of the adjoint system backward in time, and with an overview of a user’s main
program. Following that we provide complete descriptions of the user-callable interface routines
for adjoint sensitivity analysis as well as descriptions of the required additional user-defined
routines.

e Chapter 9 gives a brief overview of the generic NVECTOR module shared among the various
components of SUNDIALS, and details on the NVECTOR implementations provided with SUNDIALS.

e Chapter 10 gives a brief overview of the generic SUNMATRIX module shared among the vari-
ous components of SUNDIALS, and details on the SUNMATRIX implementations provided with
SUNDIALS: a dense implementation (§10.3), a banded implementation (§10.4) and a sparse im-
plementation (§10.5).

e Chapter 11 gives a brief overview of the generic SUNLINSOL module shared among the various
components of SUNDIALS. This chapter contains details on the SUNLINSOL implementations
provided with SUNDIALS. The chapter also contains details on the SUNLINSOL implementations
provided with SUNDIALS that interface with external linear solver libraries.

e Finally, in the appendices, we provide detailed instructions for the installation of CVODES, within
the structure of SUNDIALS (Appendix A), as well as a list of all the constants used for input to
and output from CVODES functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as CVodeInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as CVDLS, are written in all capitals. Usage and installation instructions that constitute important
warnings are marked with a triangular symbol in the margin.

1.4 SUNDIALS Release License 19

1.4 SUNDIALS Release License

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only require-
ments of the license are preservation of copyright and a standard disclaimer of liability. The full text
of the license and an additional notice are provided below and may also be found in the LICENSE
and NOTICE files provided with all SUNDIALS packages.

If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, Su-
perLU_MT, PETSc, or hypre), be sure to review the respective license of the package as that license
may have more restrictive terms than the SUNDIALS license. For example, if someone builds SUNDIALS
with a statically linked KLU, the build is subject to terms of the LGPL license (which is what KLU
is released with) and not the SUNDIALS BSD license anymore.

1.4.1 BSD 3-Clause License

Copyright (c) 2002-2021, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to en-
dorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.4.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07TNA27344.

This work was prepared as an account of work sponsored by an agency of the United States Govern-
ment. Neither the United States Government nor Lawrence Livermore National Security, LLC, nor
any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,

20 Introduction

or favoring by the United States Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

1.4.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)

Chapter 2

Mathematical Considerations

CVODES solves ODE initial value problems (IVPs) in real N-space, which we write in the abstract
form

Y= f(tvy)) y(t()) =Y, (21)

where y € RY. Here we use ¢ to denote dy/dt. While we use ¢ to denote the independent variable, and
usually this is time, it certainly need not be. CVODES solves both stiff and nonstiff systems. Roughly
speaking, stiffness is characterized by the presence of at least one rapidly damped mode, whose time
constant is small compared to the time scale of the solution itself.

Additionally, if (2.1) depends on some parameters p € RM ie.

v =f(t y, p)

y(to) = (1), (22)

CVODES can also compute first order derivative information, performing either forward sensitivity
analysis or adjoint sensitivity analysis. In the first case, CVODES computes the sensitivities of the
solution with respect to the parameters p, while in the second case, CVODES computes the gradient of
a derived function with respect to the parameters p.

2.1 IVP solution

The methods used in CVODES are variable-order, variable-step multistep methods, based on formulas
of the form

K . Ko)
Z O‘n,iynil + hn Z Bn,iyniz =0. (23)
1=0 1=0

Here the y™ are computed approximations to y(t,), and h,, = t,, — t,—1 is the step size. The user
of CVODE must choose appropriately one of two multistep methods. For nonstiff problems, CVODE
includes the Adams-Moulton formulas, characterized by K1 = 1 and Ko = g — 1 above, where the
order ¢ varies between 1 and 12. For stiff problems, ¢VODES includes the Backward Differentiation
Formulas (BDF) in so-called fixed-leading coefficient (FLC) form, given by K; = ¢ and K3 = 0, with
order ¢ varying between 1 and 5. The coefficients are uniquely determined by the method type, its
order, the recent history of the step sizes, and the normalization , o = —1. See [17] and [41].

For either choice of formula, a nonlinear system must be solved (approximately) at each integration
step. This nonlinear system can be formulated as either a rootfinding problem

F(yn) = yn - hnﬁn,Of(tnvyn) — Qp = 07 (24)

or as a fixed-point problem

22 Mathematical Considerations

where an, = 3,0 0(an,iy" "+ hnfn,y"""). CVODES provides several nonlinear solver choices as well as
the option of using a user-defined nonlinear solver (see Chapter 12). By default CVODES solves (2.4)
with a Newton iteration which requires the solution of linear systems

M[ynm+D _yn(m)] = _ p(yn(m)) (2.6)

in which
M~I—-~J, J=0f/0y, and 7 =h,bBno. (2.7)

The exact variation of the Newton iteration depends on the choice of linear solver and is discussed
below and in §12.3. For nonstiff systems, a fized-point iteration (previously referred to as a functional
iteration in this guide) for solving (2.5) is also available. This involves evaluations of f only and
can (optionally) use Anderson’s method [10, 59, 27, 48] to accelerate convergence (see §12.4 for more
details). For any nonlinear solver, the initial guess for the iteration is a predicted value vy computed
explicitly from the available history data.

For nonlinear solvers that require the solution of the linear system (2.6) (e.g., the default Newton
iteration), CVODES provides several linear solver choices, including the option of a user-supplied linear
solver module (see Chapter 11). The linear solver modules distributed with SUNDIALS are organized
in two families, a direct family comprising direct linear solvers for dense, banded, or sparse matrices,
and a spils family comprising scaled preconditioned iterative (Krylov) linear solvers. The methods
offered through these modules are as follows:

e dense direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

e band direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

e sparse direct solver interfaces, using either the KLU sparse solver library [22, 3], or the thread-
enabled SuperLU_MT sparse solver library [45, 24, 9] (serial or threaded vector modules only)
[Note that users will need to download and install the KLU or SUPERLUMT packages independent
of CVODES],

e SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver,

e SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method)
solver,

e SPBCGS, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

e SPTFQMR, a scaled preconditioned TFQMR, (Transpose-Free Quasi-Minimal Residual method)
solver, or

e PCG, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are often not feasible, the combination of a BDF in-
tegrator and a preconditioned Krylov method yields a powerful tool because it combines established
methods for stiff integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific
treatment of the dominant source of stiffness, in the form of the user-supplied preconditioner matrix
[14].

In addition, CVODE also provides a linear solver module which only uses a diagonal approximation
of the Jacobian matrix.

Note that the dense, band, and sparse direct linear solvers can only be used with the serial and
threaded vector representations. The diagonal solver can be used with any vector representation.

In the process of controlling errors at various levels, CVODES uses a weighted root-mean-square
norm, denoted || - ||wrwms, for all error-like quantities. The multiplicative weights used are based on
the current solution and on the relative and absolute tolerances input by the user, namely

W; = 1/[RTOL - |y;| + ATOL,] . (2.8)

2.1 IVP solution 23

Because 1/W; represents a tolerance in the component y;, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the cases of a matrix-based linear solver, the default Newton iteration is a Modified Newton
iteration, in that the iteration matrix M is fixed throughout the nonlinear iterations. However, in
the case that a matrix-free iterative linear solver is used, the default Newton iteration is an Inexact
Newton iteration, in which M is applied in a matrix-free manner, with matrix-vector products Jv
obtained by either difference quotients or a user-supplied routine. With the default Newton iteration,
the matrix M and preconditioner matrix P are updated as infrequently as possible to balance the
high costs of matrix operations against other costs. Specifically, this matrix update occurs when:

e starting the problem,
e more than 20 steps have been taken since the last update,

e the value 74 of v at the last update satisfies |y/5 — 1| > 0.3,

a non-fatal convergence failure just occurred, or
e an error test failure just occurred.

When forced by a convergence failure, an update of M or P may or may not involve a reevaluation
of J (in M) or of Jacobian data (in P), depending on whether Jacobian error was the likely cause of
the failure. More generally, the decision is made to reevaluate J (or instruct the user to reevaluate
Jacobian data in P) when:

e starting the problem,
e more than 50 steps have been taken since the last evaluation,

e a convergence failure occurred with an outdated matrix, and the value % of « at the last update
satisfies |y/7 — 1| < 0.2, or

e a convergence failure occurred that forced a step size reduction.

The default stopping test for nonlinear solver iterations is related to the subsequent local error test,
with the goal of keeping the nonlinear iteration errors from interfering with local error control. As
described below, the final computed value 3™(™) will have to satisfy a local error test [|y™(™ —y™0)|| <
e. Letting y™ denote the exact solution of (2.4), we want to ensure that the iteration error y™ — y"(m)
is small relative to e, specifically that it is less than 0.1e. (The safety factor 0.1 can be changed by the
user.) For this, we also estimate the linear convergence rate constant R as follows. We initialize R to
1, and reset R = 1 when M or P is updated. After computing a correction d,, = 3™ —y™(m=1) we
update R if m > 1 as

R + max{0.3R, [|6m]/]|6m-1]} -

Now we use the estimate
ly™ =y & [y =y 0| = Ry =y D) = R6]) -
Therefore the convergence (stopping) test is
R||6,m]| < 0.1€.

We allow at most 3 iterations (but this limit can be changed by the user). We also declare the iteration
diverged if any ||0,,]|/]|0m—1]| > 2 with m > 1. If convergence fails with J or P current, we are forced
to reduce the step size, and we replace h,, by h, /4. The integration is halted after a preset number
of convergence failures; the default value of this limit is 10, but this can be changed by the user.
When an iterative method is used to solve the linear system, its errors must also be controlled, and
this also involves the local error test constant. The linear iteration error in the solution vector 6,, is
approximated by the preconditioned residual vector. Thus to ensure (or attempt to ensure) that the

24 Mathematical Considerations

linear iteration errors do not interfere with the nonlinear error and local integration error controls, we
require that the norm of the preconditioned residual be less than 0.05 - (0.1¢).

When the Jacobian is stored using either dense or band SUNMATRIX objects, the Jacobian may be
supplied by a user routine, or approximated by difference quotients, at the user’s option. In the latter
case, we use the usual approximation

Jij = [fi(t,y + oje;) — fit,y)]/o; -

The increments o; are given by
o= max{\/ﬁ |yj|,ao/Wj} ,

where U is the unit roundoff, oy is a dimensionless value, and W is the error weight defined in (2.8).
In the dense case, this scheme requires N evaluations of f, one for each column of J. In the band case,
the columns of J are computed in groups, by the Curtis-Powell-Reid algorithm, with the number of
f evaluations equal to the bandwidth.

We note that with sparse and user-supplied SUNMATRIX objects, the Jacobian must be supplied
by a user routine.

In the case of a Krylov method, preconditioning may be used on the left, on the right, or both,
with user-supplied routines for the preconditioning setup and solve operations, and optionally also
for the required matrix-vector products Jv. If a routine for Jv is not supplied, these products are
computed as

Ju=[f(t,y+ov) — f(t,y)]/o. (2.9)

The increment o is 1/||v||, so that ov has norm 1.

A critical part of CVODES — making it an ODE “solver” rather than just an ODE method, is its
control of local error. At every step, the local error is estimated and required to satisfy tolerance
conditions, and the step is redone with reduced step size whenever that error test fails. As with
any linear multistep method, the local truncation error LTE, at order g and step size h, satisfies an
asymptotic relation

LTE = Chot1lya+h) L O(hat2)

for some constant C', under mild assumptions on the step sizes. A similar relation holds for the error
in the predictor y™(9). These are combined to get a relation

LTE = C'[y" — y"O] + O(h9?).

The local error test is simply || LTE|| < 1. Using the above, it is performed on the predictor-corrector
difference A,, = y™(m) — ¢yn(0) (with y™(™) the final iterate computed), and takes the form

ARl < e=1/1C".

If this test passes, the step is considered successful. If it fails, the step is rejected and a new step size
h' is computed based on the asymptotic behavior of the local error, namely by the equation

(W' /h)T [Al = €/6.

Here 1/6 is a safety factor. A new attempt at the step is made, and the error test repeated. If it fails
three times, the order ¢ is reset to 1 (if ¢ > 1), or the step is restarted from scratch (if ¢ = 1). The
ratio A'/h is limited above to 0.2 after two error test failures, and limited below to 0.1 after three.
After seven failures, CVODES returns to the user with a give-up message.

In addition to adjusting the step size to meet the local error test, CVODE periodically adjusts the
order, with the goal of maximizing the step size. The integration starts out at order 1 and varies the
order dynamically after that. The basic idea is to pick the order ¢ for which a polynomial of order ¢
best fits the discrete data involved in the multistep method. However, if either a convergence failure
or an error test failure occurred on the step just completed, no change in step size or order is done.

2.2 Preconditioning 25

At the current order ¢, selecting a new step size is done exactly as when the error test fails, giving a

tentative step size ratio
W Jh = (e/6]|An]) D =1,

We consider changing order only after taking ¢+ 1 steps at order ¢, and then we consider only orders
¢ =q—1(@{fg>1)orq¢ =qg+1 (if ¢ < 5). The local truncation error at order ¢’ is estimated using
the history data. Then a tentative step size ratio is computed on the basis that this error, LTE(q’),
behaves asymptotically as R+ With safety factors of 1/6 and 1/10 respectively, these ratios are:

W' /h = [1/6]LTE(g = 1)|]V/* = 151

and
W /h = [1/10[LTE(q + D]/ = 5,

The new order and step size are then set according to

n= ma‘x{nq—la 7]q777q+1} 5 h/ = nh7

with ¢’ set to the index achieving the above maximum. However, if we find that n < 1.5, we do not
bother with the change. Also, h'/h is always limited to 10, except on the first step, when it is limited
to 10%.

The various algorithmic features of CVODES described above, as inherited from VODE and VODPK,
are documented in [13, 16, 35]. They are also summarized in [36].

CVODES permits the user to impose optional inequality constraints on individual components of
the solution vector y. Any of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0,
or y; < 0. The constraint satisfaction is tested after a successful nonlinear system solution. If any
constraint fails, we declare a convergence failure of the Newton iteration and reduce the step size.
Rather than cutting the step size by some arbitrary factor, CVODES estimates a new step size h' using
a linear approximation ofthe components in y that failed the constraint test (including a afety factor
of 0.9 to cover the strict inequality case). If a step fails to satisfy the constraints repeatedly within
a step attempt or fails with the minimum step size then the integration is halted and an error is
returned. In this case the user may need to employ other strategies as discussed in §4.5.2 to satisfy
the inequality constraints.

Normally, CVODES takes steps until a user-defined output value ¢t = t,y is overtaken, and then
it computes y(tout) by interpolation. However, a “one step” mode option is available, where control
returns to the calling program after each step. There are also options to force CVODES not to integrate
past a given stopping point ¢ = tgop.

2.2 Preconditioning

When using a nonlinear solver that requires the solution of the linear system (2.6) (e.g., the default
Newton iteration), CVODES makes repeated use of a linear solver to solve linear systems of the form
Mx = —r, where z is a correction vector and r is a residual vector. If this linear system solve is done
with one of the scaled preconditioned iterative linear solvers supplied with SUNDIALS, these solvers
are rarely successful if used without preconditioning; it is generally necessary to precondition the
system in order to obtain acceptable efficiency. A system Ax = b can be preconditioned on the left, as
(P~'A)x = P~'b; on the right, as (AP~!)Pz = b; or on both sides, as (P; ' AP, "')Prx = P; 'b. The
Krylov method is then applied to a system with the matrix P~'A, or AP~!, or P, 'APg", instead of
A. In order to improve the convergence of the Krylov iteration, the preconditioner matrix P, or the
product PpPgr in the last case, should in some sense approximate the system matrix A. Yet at the
same time, in order to be cost-effective, the matrix P, or matrices P;, and Pg, should be reasonably
efficient to evaluate and solve. Finding a good point in this tradeoff between rapid convergence and
low cost can be very difficult. Good choices are often problem-dependent (for example, see [14] for an
extensive study of preconditioners for reaction-transport systems).

Most of the iterative linear solvers supplied with SUNDIALS allow for preconditioning either side,
or on both sides, although we know of no situation where preconditioning on both sides is clearly

26 Mathematical Considerations

superior to preconditioning on one side only (with the product P Pr). Moreover, for a given precon-
ditioner matrix, the merits of left vs. right preconditioning are unclear in general, and the user should
experiment with both choices. Performance will differ because the inverse of the left preconditioner is
included in the linear system residual whose norm is being tested in the Krylov algorithm. As a rule,
however, if the preconditioner is the product of two matrices, we recommend that preconditioning be
done either on the left only or the right only, rather than using one factor on each side.

Typical preconditioners used with CVODES are based on approximations to the system Jacobian,
J = 0f /0y. Since the matrix involved is M = I —.J, any approximation .J to J yields a matrix that
is of potential use as a preconditioner, namely P = I —~.J. Because the linear solver iteration occurs
within a nonlinear solver iteration and further also within a time integration, and since each of these
iterations has its own test for convergence, the preconditioner may use a very crude approximation, as
long as it captures the dominant numerical feature(s) of the system. We have found that the combina-
tion of a preconditioner with the Newton-Krylov iteration, using even a fairly poor approximation to
the Jacobian, can be surprisingly superior to using the same matrix without Krylov acceleration (i.e.,
a modified Newton iteration), as well as to using the Newton-Krylov method with no preconditioning.

2.3 BDF stability limit detection

CVODES includes an algorithm, STALD (STAbility Limit Detection), which provides protection against
potentially unstable behavior of the BDF multistep integration methods in certain situations, as
described below.

When the BDF option is selected, CVODES uses Backward Differentiation Formula methods of
orders 1 to 5. At order 1 or 2, the BDF method is A-stable, meaning that for any complex constant
A in the open left half-plane, the method is unconditionally stable (for any step size) for the standard
scalar model problem § = Ay. For an ODE system, this means that, roughly speaking, as long as all
modes in the system are stable, the method is also stable for any choice of step size, at least in the
sense of a local linear stability analysis.

At orders 3 to 5, the BDF methods are not A-stable, although they are stiffly stable. In each case,
in order for the method to be stable at step size h on the scalar model problem, the product AA must
lie within a region of absolute stability. That region excludes a portion of the left half-plane that is
concentrated near the imaginary axis. The size of that region of instability grows as the order increases
from 3 to 5. What this means is that, when running BDF at any of these orders, if an eigenvalue A of
the system lies close enough to the imaginary axis, the step sizes h for which the method is stable are
limited (at least according to the linear stability theory) to a set that prevents h\ from leaving the
stability region. The meaning of close enough depends on the order. At order 3, the unstable region
is much narrower than at order 5, so the potential for unstable behavior grows with order.

System eigenvalues that are likely to run into this instability are ones that correspond to weakly
damped oscillations. A pure undamped oscillation corresponds to an eigenvalue on the imaginary axis.
Problems with modes of that kind call for different considerations, since the oscillation generally must
be followed by the solver, and this requires step sizes (h ~ 1/v, where v is the frequency) that are
stable for BDF anyway. But for a weakly damped oscillatory mode, the oscillation in the solution is
eventually damped to the noise level, and at that time it is important that the solver not be restricted
to step sizes on the order of 1/v. It is in this situation that the new option may be of great value.

In terms of partial differential equations, the typical problems for which the stability limit detection
option is appropriate are ODE systems resulting from semi-discretized PDEs (i.e., PDEs discretized
in space) with advection and diffusion, but with advection dominating over diffusion. Diffusion alone
produces pure decay modes, while advection tends to produce undamped oscillatory modes. A mix of
the two with advection dominant will have weakly damped oscillatory modes.

The STALD algorithm attempts to detect, in a direct manner, the presence of a stability region
boundary that is limiting the step sizes in the presence of a weakly damped oscillation [33]. The
algorithm supplements (but differs greatly from) the existing algorithms in CVODES for choosing step
size and order based on estimated local truncation errors. The STALD algorithm works directly with

2.4 Rootfinding 27

history data that is readily available in cvODES. If it concludes that the step size is in fact stability-
limited, it dictates a reduction in the method order, regardless of the outcome of the error-based
algorithm. The STALD algorithm has been tested in combination with the VODE solver on linear
advection-dominated advection-diffusion problems [34], where it works well. The implementation in
CVODES has been successfully tested on linear and nonlinear advection-diffusion problems, among
others.

This stability limit detection option adds some computational overhead to the CVODES solution.
(In timing tests, these overhead costs have ranged from 2% to 7% of the total, depending on the size
and complexity of the problem, with lower relative costs for larger problems.) Therefore, it should
be activated only when there is reasonable expectation of modes in the user’s system for which it
is appropriate. In particular, if a CVODE solution with this option turned off appears to take an
inordinately large number of steps at orders 3-5 for no apparent reason in terms of the solution time
scale, then there is a good chance that step sizes are being limited by stability, and that turning on
the option will improve the efficiency of the solution.

2.4 Rootfinding

The CVODES solver has been augmented to include a rootfinding feature. This means that, while
integrating the Initial Value Problem (2.1), CVODES can also find the roots of a set of user-defined
functions g¢;(¢,y) that depend both on ¢ and on the solution vector y = y(¢). The number of these root
functions is arbitrary, and if more than one g; is found to have a root in any given interval, the various
root locations are found and reported in the order that they occur on the ¢ axis, in the direction of
integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes
in sign of g;(t,y(t)), denoted g¢;(¢) for short. If a user root function has a root of even multiplicity
(no sign change), it will probably be missed by CcvODES. If such a root is desired, the user should
reformulate the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and
then (when a sign change is found) to hone in on the root(s) with a modified secant method [32]. In
addition, each time g is computed, CVODES checks to see if g;(t) = 0 exactly, and if so it reports this
as a root. However, if an exact zero of any g; is found at a point ¢, CVODES computes g at t + § for a
small increment ¢, slightly further in the direction of integration, and if any g;(t+4J) = 0 also, CVODES
stops and reports an error. This way, each time CVODES takes a time step, it is guaranteed that the
values of all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, CVODES has an interval (., ;] in which roots of the g;(¢t) are to be sought, such that
tp; is further ahead in the direction of integration, and all g;(¢;,) # 0. The endpoint t; is either ¢,
the end of the time step last taken, or the next requested output time ¢y, if this comes sooner. The
endpoint t;, is either ¢,,_1, the last output time ¢, (if this occurred within the last step), or the last
root location (if a root was just located within this step), possibly adjusted slightly toward ¢, if an
exact zero was found. The algorithm checks g; at t; for zeros and for sign changes in (¢, tp;). If
no sign changes were found, then either a root is reported (if some g;(t5;) = 0) or we proceed to the
next time interval (starting at ¢j;). If one or more sign changes were found, then a loop is entered to
locate the root to within a rather tight tolerance, given by

7=100%U * (|t,| + |h]) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |g;(tr:)|/|9:(tni) — gi(ti0)|, corresponding to the
closest to t;, of the secant method values. At each pass through the loop, a new value t,,;4 is set,
strictly within the search interval, and the values of g;(¢:q4) are checked. Then either ¢, or tp; is
reset to t,,;q according to which subinterval is found to include the sign change. If there is none in
(tio, tmia) but some g;(tm:q) = 0, then that root is reported. The loop continues until |¢tp; — 10| < T,
and then the reported root location is tp;.

28 Mathematical Considerations

In the loop to locate the root of g;(t), the formula for t,,;q4 is

tmid = thi — (thi — t10)9i(thi)/[9i(thi) — agi(tio)] ,

where « is a weight parameter. On the first two passes through the loop, « is set to 1, making ¢,,;4
the secant method value. Thereafter, « is reset according to the side of the subinterval (low vs. high,
i.e., toward t;, vs. toward tp;) in which the sign change was found in the previous two passes. If
the two sides were opposite, « is set to 1. If the two sides were the same, « is halved (if on the low
side) or doubled (if on the high side). The value of t,,;q is closer to t;, when o < 1 and closer to tp;
when a > 1. If the above value of t,,;4 is within 7/2 of ¢, or tz;, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least 7/2.

2.5 Pure quadrature integration

In many applications, and most notably during the backward integration phase of an adjoint sensitivity
analysis run (see §2.7) it is of interest to compute integral quantities of the form

t

A0 = [alr(n.p)dr. (210)
to

The most effective approach to compute z(t) is to extend the original problem with the additional

ODEs (obtained by applying Leibnitz’s differentiation rule):

z2=q(t,y,p), z(to)=0. (2.11)

Note that this is equivalent to using a quadrature method based on the underlying linear multistep
polynomial representation for y(t).

This can be done at the “user level” by simply exposing to CVODES the extended ODE system
(2.2)+(2.10). However, in the context of an implicit integration solver, this approach is not desirable
since the nonlinear solver module will require the Jacobian (or Jacobian-vector product) of this ex-
tended ODE. Moreover, since the additional states z do not enter the right-hand side of the ODE
(2.10) and therefore the right-hand side of the extended ODE system, it is much more efficient to treat
the ODE system (2.10) separately from the original system (2.2) by “taking out” the additional states
z from the nonlinear system (2.4) that must be solved in the correction step of the LMM. Instead,
“corrected” values z™ are computed explicitly as

K2 Kl
1 . .
2" =— (hnﬂn,OQ(tny yn,p) + hy Zﬁn,’izn '+ Z an,izn Z) 5

a
n,0 i=1 i—1

once the new approximation y™ is available.
The quadrature variables z can be optionally included in the error test, in which case corresponding
relative and absolute tolerances must be provided.

2.6 Forward sensitivity analysis

Typically, the governing equations of complex, large-scale models depend on various parameters,
through the right-hand side vector and/or through the vector of initial conditions, as in (2.2). In
addition to numerically solving the ODEs, it may be desirable to determine the sensitivity of the results
with respect to the model parameters. Such sensitivity information can be used to estimate which
parameters are most influential in affecting the behavior of the simulation or to evaluate optimization
gradients (in the setting of dynamic optimization, parameter estimation, optimal control, etc.).

The solution sensitivity with respect to the model parameter p; is defined as the vector s;(t) =
Oy(t)/Op; and satisfies the following forward sensitivity equations (or sensitivity equations for short):
Cof L of o)

2 } Zt -
6y5 * ap;” ° (to) Op;

, (2.12)

5

2.6 Forward sensitivity analysis 29

obtained by applying the chain rule of differentiation to the original ODEs (2.2).

When performing forward sensitivity analysis, CVODES carries out the time integration of the
combined system, (2.2) and (2.12), by viewing it as an ODE system of size N(Ns + 1), where N,
is the number of model parameters p;, with respect to which sensitivities are desired (N; < Np).
However, major improvements in efficiency can be made by taking advantage of the special form of
the sensitivity equations as linearizations of the original ODEs. In particular, for stiff systems, for
which CVODES employs a Newton iteration, the original ODE system and all sensitivity systems share
the same Jacobian matrix, and therefore the same iteration matrix M in (2.7).

The sensitivity equations are solved with the same linear multistep formula that was selected for
the original ODEs and, if Newton iteration was selected, the same linear solver is used in the correction
phase for both state and sensitivity variables. In addition, CVODES offers the option of including (full
error control) or excluding (partial error control) the sensitivity variables from the local error test.

2.6.1 Forward sensitivity methods

In what follows we briefly describe three methods that have been proposed for the solution of the
combined ODE and sensitivity system for the vector § = [y, s1,...,Sn.]-

e Staggered Direct

In this approach [20], the nonlinear system (2.4) is first solved and, once an acceptable numerical
solution is obtained, the sensitivity variables at the new step are found by directly solving (2.12)
after the (BDF or Adams) discretization is used to eliminate $;. Although the system matrix
of the above linear system is based on exactly the same information as the matrix M in (2.7),
it must be updated and factored at every step of the integration, in contrast to an evalutaion
of M which is updated only occasionally. For problems with many parameters (relative to the
problem size), the staggered direct method can outperform the methods described below [44].
However, the computational cost associated with matrix updates and factorizations makes this
method unattractive for problems with many more states than parameters (such as those arising
from semidiscretization of PDEs) and is therefore not implemented in CVODES.

o Simultaneous Corrector

In this method [49], the discretization is applied simultaneously to both the original equations
(2.2) and the sensitivity systems (2.12) resulting in the following nonlinear system

F(Qn) = yn - hnﬁmOfA(tny gn) - dn - Oa

where f = [f(t,y,p),...,(0f /9y)(t,y,p)si + (0 /Op:)(t,y,p),...], and @y is comprised of the
terms in the discretization that depend on the solution at previous integration steps. This
combined nonlinear system can be solved using a modified Newton method as in (2.6) by solving
the corrector equation

M[?n(erl) - gn(m)} = _F(gn(m)) (2'13)
at each iteration, where
M
—’VJl M
M = —vJa2 0 M ,
_’YJNS 0 ce 0 M

M is defined as in (2.7), and J; = (8/9y) [(0f/0y)s; + (Of/Op;)]. Tt can be shown that 2-step
quadratic convergence can be retained by using only the block-diagonal portion of M in the
corrector equation (2.13). This results in a decoupling that allows the reuse of M without
additional matrix factorizations. However, the products (0 f/dy)s; and the vectors 9 f/0p; must
still be reevaluated at each step of the iterative process (2.13) to update the sensitivity portions
of the residual G.

30 Mathematical Considerations

e Staggered corrector
In this approach [28], as in the staggered direct method, the nonlinear system (2.4) is solved
first using the Newton iteration (2.6). Then a separate Newton iteration is used to solve the
sensitivity system (2.12):

MY -)

| n(m) % n n(m) af n — s
|:Si ’Y (ay (t’n7 y ap)Si + ap7, (tnv y ap) az,n bl (214)

where a;, = 30, o(an,j8] 7 + haBn ;3] 77). In other words, a modified Newton iteration is

used to solve a linear system. In this approach, the vectors df/dp; need be updated only
once per integration step, after the state correction phase (2.6) has converged. Note also that
Jacobian-related data can be reused at all iterations (2.14) to evaluate the products (0f/0y)s;.

CVODES implements the simultaneous corrector method and two flavors of the staggered corrector
method which differ only if the sensitivity variables are included in the error control test. In the
full error control case, the first variant of the staggered corrector method requires the convergence of
the iterations (2.14) for all N; sensitivity systems and then performs the error test on the sensitivity
variables. The second variant of the method will perform the error test for each sensitivity vector
si, (1 = 1,2,...,Ny) individually, as they pass the convergence test. Differences in performance
between the two variants may therefore be noticed whenever one of the sensitivity vectors s; fails a
convergence or error test.

An important observation is that the staggered corrector method, combined with a Krylov linear
solver, effectively results in a staggered direct method. Indeed, the Krylov solver requires only the
action of the matrix M on a vector and this can be provided with the current Jacobian information.
Therefore, the modified Newton procedure (2.14) will theoretically converge after one iteration.

2.6.2 Selection of the absolute tolerances for sensitivity variables

If the sensitivities are included in the error test, CVODES provides an automated estimation of absolute
tolerances for the sensitivity variables based on the absolute tolerance for the corresponding state
variable. The relative tolerance for sensitivity variables is set to be the same as for the state variables.
The selection of absolute tolerances for the sensitivity variables is based on the observation that
the sensitivity vector s; will have units of [y]/[p;]. With this, the absolute tolerance for the j-th
component of the sensitivity vector s; is set to ATOL;/|p;|, where ATOL; are the absolute tolerances for
the state variables and p is a vector of scaling factors that are dimensionally consistent with the model
parameters p and give an indication of their order of magnitude. This choice of relative and absolute
tolerances is equivalent to requiring that the weighted root-mean-square norm of the sensitivity vector
s; with weights based on s; be the same as the weighted root-mean-square norm of the vector of scaled
sensitivities §; = |p;|s; with weights based on the state variables (the scaled sensitivities §; being
dimensionally consistent with the state variables). However, this choice of tolerances for the s; may
be a poor one, and the user of CVODES can provide different values as an option.

2.6.3 Evaluation of the sensitivity right-hand side

There are several methods for evaluating the right-hand side of the sensitivity systems (2.12): an-
alytic evaluation, automatic differentiation, complex-step approximation, and finite differences (or
directional derivatives). CVODES provides all the software hooks for implementing interfaces to au-
tomatic differentiation (AD) or complex-step approximation; future versions will include a generic
interface to AD-generated functions. At the present time, besides the option for analytical sen-
sitivity right-hand sides (user-provided), CVODES can evaluate these quantities using various finite
difference-based approximations to evaluate the terms (9f/0y)s; and (9f/0p;), or using directional
derivatives to evaluate [(0f/0y)s; + (0f/0p;)]. As is typical for finite differences, the proper choice of
perturbations is a delicate matter. CVODES takes into account several problem-related features: the

2.7 Adjoint sensitivity analysis 31

relative ODE error tolerance RTOL, the machine unit roundoff U, the scale factor p;, and the weighted
root-mean-square norm of the sensitivity vector s;.

Using central finite differences as an example, the two terms (0f/dy)s; and 9f/0p; in the right-
hand side of (2.12) can be evaluated either separately:

of [ty +oysi,p) — f(t,y — aysi,p)

of o , 2.1
of _ ftty,p+oiei) = f(t,y,p— oici) (2.15")
opi 20; 7 '

1
o; = |pi|v/max(rTOL,U), 0y =

max(1/ay, ||sillwrms/[pil) 7

or simultaneously:

of

s of _ fltytosi,ptoe)— flt,y—osi,p—oei)
oy~

sz- - 20 ’

o =min(o;, 0y),

- (2.16)

or by adaptively switching between (2.15)+(2.15) and (2.16), depending on the relative size of the
finite difference increments o; and o,. In the adaptive scheme, if p = max(o;/0y,0y/0;), we use
separate evaluations if p > pnax (an input value), and simultaneous evaluations otherwise.

These procedures for choosing the perturbations (o, o, o) and switching between finite difference
and directional derivative formulas have also been implemented for one-sided difference formulas.
Forward finite differences can be applied to (0f/dy)s; and Jf/0p; separately, or the single directional
derivative formula

of L Of fltytosiptoe) - f(typ)

oyt op; o
can be used. In CVODES, the default value of ppax = 0 indicates the use of the second-order centered
directional derivative formula (2.16) exclusively. Otherwise, the magnitude of pax and its sign (pos-
itive or negative) indicates whether this switching is done with regard to (centered or forward) finite
differences, respectively.

2.6.4 Quadratures depending on forward sensitivities

If pure quadrature variables are also included in the problem definition (see §2.5), CVODES does
not carry their sensitivities automatically. Instead, we provide a more general feature through which
integrals depending on both the states y of (2.2) and the state sensitivities s; of (2.12) can be evaluated.
In other words, CVODES provides support for computing integrals of the form:

t
zZ(t) = / q(r,y(1),51(7),...,sn,(T),p) dT .
to
If the sensitivities of the quadrature variables z of (2.10) are desired, these can then be computed
by using:
Qi:qysi"’_qpi, i:]-v"wNpa
as integrands for z, where ¢, and ¢, are the partial derivatives of the integrand function ¢ of (2.10).

As with the quadrature variables z, the new variables Z are also excluded from any nonlinear solver
phase and “corrected” values Z™ are obtained through explicit formulas.

2.7 Adjoint sensitivity analysis

In the forward semsitivity approach described in the previous section, obtaining sensitivities with
respect to Ny parameters is roughly equivalent to solving an ODE system of size (1 + Ng)N. This
can become prohibitively expensive, especially for large-scale problems, if sensitivities with respect

32 Mathematical Considerations

to many parameters are desired. In this situation, the adjoint sensitivity method is a very attractive
alternative, provided that we do not need the solution sensitivities s;, but rather the gradients with
respect to model parameters of a relatively few derived functionals of the solution. In other words, if
y(t) is the solution of (2.2), we wish to evaluate the gradient dG/dp of

T
G(p) = [g(t,y,p)dt, (2.17)

or, alternatively, the gradient dg/dp of the function g(¢,y,p) at the final time T'. The function g must
be smooth enough that dg/dy and dg/0p exist and are bounded.

In what follows, we only sketch the analysis for the sensitivity problem for both G and g. For
details on the derivation see [19]. Introducing a Lagrange multiplier A, we form the augmented
objective function

T
I6)=Gl)~ [N (- ey, (218)
to
where * denotes the conjugate transpose. The gradient of G with respect to p is
dG dI /T T
bl g+gsdt—/ N (§— fys— fp)dt, 2.19
dp dp t (P Y) ‘o (Y p) ()
where subscripts on functions f or g are used to denote partial derivatives and s = [s1,...,sn.] is the

matrix of solution sensitivities. Applying integration by parts to the term A*$, and by requiring that

A satisfy
A= (YD) Ao (Y
(5:) - (5) o2

the gradient of G with respect to p is nothing but

dG T
T = N (st + / (gp + X*fy) dt (2.21)

The gradient of ¢(T,y,p) with respect to p can be then obtained by using the Leibnitz differentiation

rule. Indeed, from (2.17),
dg .. _ d dG

o =Ty
and therefore, taking into account that dG/dp in (2.21) depends on T both through the upper inte-
gration limit and through A, and that A\(T") = 0,

dg

T
p (T) = p*(to)s(to) + gp(T) + /to w fpdt, (2.22)

where p is the sensitivity of A with respect to the final integration limit 7. Thus p satisfies the
following equation, obtained by taking the total derivative with respect to T of (2.20):

AN
ag) *
T)=| = .
w(T) () .
The final condition on u(T) follows from (9A/dt) + (ON/OT) = 0 at T, and therefore, pu(T) = —A(T).

The first thing to notice about the adjoint system (2.20) is that there is no explicit specification
of the parameters p; this implies that, once the solution A is found, the formula (2.21) can then be

(2.23)

2.7 Adjoint sensitivity analysis 33

used to find the gradient of G with respect to any of the parameters p. The same holds true for the
system (2.23) and the formula (2.22) for gradients of ¢g(T,y,p). The second important remark is that
the adjoint systems (2.20) and (2.23) are terminal value problems which depend on the solution y(t)
of the original IVP (2.2). Therefore, a procedure is needed for providing the states y obtained during
a forward integration phase of (2.2) to CvODES during the backward integration phase of (2.20) or
(2.23). The approach adopted in CVODES, based on checkpointing, is described below.

2.7.1 Checkpointing scheme

During the backward integration, the evaluation of the right-hand side of the adjoint system requires,
at the current time, the states y which were computed during the forward integration phase. Since
CVODES implements variable-step integration formulas, it is unlikely that the states will be available
at the desired time and so some form of interpolation is needed. The CVODES implementation being
also variable-order, it is possible that during the forward integration phase the order may be reduced
as low as first order, which means that there may be points in time where only y and y are available.
These requirements therefore limit the choices for possible interpolation schemes. CVODES implements
two interpolation methods: a cubic Hermite interpolation algorithm and a variable-degree polynomial
interpolation method which attempts to mimic the BDF interpolant for the forward integration.

However, especially for large-scale problems and long integration intervals, the number and size
of the vectors y and g that would need to be stored make this approach computationally intractable.
Thus, CVODES settles for a compromise between storage space and execution time by implementing
a so-called checkpointing scheme. At the cost of at most one additional forward integration, this
approach offers the best possible estimate of memory requirements for adjoint sensitivity analysis. To
begin with, based on the problem size N and the available memory, the user decides on the number
Ny of data pairs (y,) if cubic Hermite interpolation is selected, or on the number Ny of y vectors
in the case of variable-degree polynomial interpolation, that can be kept in memory for the purpose
of interpolation. Then, during the first forward integration stage, after every N, integration steps a
checkpoint is formed by saving enough information (either in memory or on disk) to allow for a hot
restart, that is a restart which will exactly reproduce the forward integration. In order to avoid storing
Jacobian-related data at each checkpoint, a reevaluation of the iteration matrix is forced before each
checkpoint. At the end of this stage, we are left with N, checkpoints, including one at ty. During the
backward integration stage, the adjoint variables are integrated from T to ty going from one checkpoint
to the previous one. The backward integration from checkpoint ¢ + 1 to checkpoint 7 is preceded by a
forward integration from ¢ to i + 1 during which the N4 vectors y (and, if necessary ¢) are generated
and stored in memory for interpolation® (see Fig. 2.1).

This approach transfers the uncertainty in the number of integration steps in the forward inte-
gration phase to uncertainty in the final number of checkpoints. However, N, is much smaller than
the number of steps taken during the forward integration, and there is no major penalty for writ-
ing/reading the checkpoint data to/from a temporary file. Note that, at the end of the first forward
integration stage, interpolation data are available from the last checkpoint to the end of the interval of
integration. If no checkpoints are necessary (Ny is larger than the number of integration steps taken
in the solution of (2.2)), the total cost of an adjoint sensitivity computation can be as low as one
forward plus one backward integration. In addition, CVODES provides the capability of reusing a set
of checkpoints for multiple backward integrations, thus allowing for efficient computation of gradients
of several functionals (2.17).

1The degree of the interpolation polynomial is always that of the current BDF order for the forward interpolation at
the first point to the right of the time at which the interpolated value is sought (unless too close to the i-th checkpoint, in
which case it uses the BDF order at the right-most relevant point). However, because of the FLC BDF implementation
(see §2.1), the resulting interpolation polynomial is only an approximation to the underlying BDF interpolant.

The Hermite cubic interpolation option is present because it was implemented chronologically first and it is also used
by other adjoint solvers (e.g. DASPKADJOINT). The variable-degree polynomial is more memory-efficient (it requires
only half of the memory storage of the cubic Hermite interpolation) and is more accurate. The accuracy differences
are minor when using BDF (since the maximum method order cannot exceed 5), but can be significant for the Adams
method for which the order can reach 12.

34 Mathematical Considerations

//—\
Forward pass

Backward pass

Figure 2.1: Illustration of the checkpointing algorithm for generation of the forward solution during
the integration of the adjoint system.

Finally, we note that the adjoint sensitivity module in CVODES provides the necessary infrastructure
to integrate backwards in time any ODE terminal value problem dependent on the solution of the
IVP (2.2), including adjoint systems (2.20) or (2.23), as well as any other quadrature ODEs that may
be needed in evaluating the integrals in (2.21) or (2.22). In particular, for ODE systems arising from
semi-discretization of time-dependent PDEs, this feature allows for integration of either the discretized
adjoint PDE system or the adjoint of the discretized PDE.

2.8 Second-order sensitivity analysis

In some applications (e.g., dynamically-constrained optimization) it may be desirable to compute

second-order derivative information. Considering the ODE problem (2.2) and some model output

functional,? g(y) then the Hessian d?g/dp?® can be obtained in a forward sensitivity analysis setting as
2

d°g T
a2 = (90 ©In,) Yo + Uy 9t

where ® is the Kronecker product. The second-order sensitivities are solution of the matrix ODE
system:

p = (fy ®INp) “Ypp + (IN ®yf) * fyyYp

d%yo
Ypp(to) = ap?

where y,, is the first-order sensitivity matrix, the solution of N, systems (2.12), and y,,, is a third-order
tensor. It is easy to see that, except for situations in which the number of parameters IV, is very small,
the computational cost of this so-called forward-over-forward approach is exorbitant as it requires the
solution of N, + Np2 additional ODE systems of the same dimension N as (2.2).

A much more efficient alternative is to compute Hessian-vector products using a so-called forward-
over-adjoint approach. This method is based on using the same “trick” as the one used in computing
gradients of pointwise functionals with the adjoint method, namely applying a formal directional
forward derivation to one of the gradients of (2.21) or (2.22). With that, the cost of computing
a full Hessian is roughly equivalent to the cost of computing the gradient with forward sensitivity
analysis. However, Hessian-vector products can be cheaply computed with one additional adjoint
solve. Consider for example, G(p ft (t,y)dt. Tt can be shown that the product between the
Hessian of G (with respect to the parameters p) and some vector u can be computed as

0*G

87])2111 = [()‘T ® INp) YppU + yITJF'U’} t=to ’

2For the sake of simplifity in presentation, we do not include explicit dependencies of g on time ¢ or parameters p.
Moreover, we only consider the case in which the dependency of the original ODE (2.2) on the parameters p is through
its initial conditions only. For details on the derivation in the general case, see [50].

2.8 Second-order sensitivity analysis 35

where A, u, and s are solutions of

*ﬂ:fyTﬂJF(/\T@In)fystrgyys% pity) =0
_}\:fg)\+g3; Atyp) =0 (2.24)
s$=fys; s(to) = yopu

In the above equation, s = y,u is a linear combination of the columns of the sensitivity matrix y,.
The forward-over-adjoint approach hinges crucially on the fact that s can be computed at the cost of
a forward sensitivity analysis with respect to a single parameter (the last ODE problem above) which
is possible due to the linearity of the forward sensitivity equations (2.12).

Therefore, the cost of computing the Hessian-vector product is roughly that of two forward and two
backward integrations of a system of ODEs of size N. For more details, including the corresponding
formulas for a pointwise model functional output, see [50].

To allow the foward-over-adjoint approach described above, CVODES provides support for:

e the integration of multiple backward problems depending on the same underlying forward prob-
lem (2.2), and

e the integration of backward problems and computation of backward quadratures depending on
both the states y and forward sensitivities (for this particular application, s) of the original
problem (2.2).

Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as SUNDIALS consists of the solvers CVODE and ARKODE (for ODE

systems), KINSOL (for nonlinear algebraic systems), and DA (for differential-algebraic systems).

addition, SUNDIALS also includes variants of CVODE and IDA with sensitivity analysis capabilities

(using either forward or adjoint methods), called CVODES and IDAS, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Figures 3.1 and 3.2).

SUNDIALS

[CVODE] [CVODES] [ARKODE] [

)

IDA IDAS

] [KINSOL]

-h-h-h-h

Trilinos

Figure 3.1: High-level diagram of the SUNDIALS suite.

Ea=3

(Crrraun) sroce]

Vectors Matrlces Linear Solvers Nonlmear Solvers
[Serial Parallel (MPI1)] Dense Band Matrix-based Newton Fixed Point
S LU
[PThreads] [OpenMP] [Sparse] [,‘;Jgfgc] [Dense][Band]
[OpenMP DEV] [CUDA] MAGMA Dense LAPACK LAPACK
Dense Band

[HIP] [RAJA] [a][SuperLU]

SYCL] [ManyVector] SuperLU
[DIST CuSOLVER
[MPI ManyVector] [MPI + X]

MAGMA Dense

fRariavE] [PETSc]

[(hypre) Matrix-free

The

38

Code Organization

| cmtke | —| dtc | —| exar:ples| —| inctjde | —| stc | | tett |
—>| arkode | —>| arkode | —>| arkode | —>| arkode |
—>| cvode | —>| cvode |
—’| cvodes | —’l cvodes |
e B |
— idas | [idas |
—’l kinsol | —>| kinsol | _»
—>| sundials | —’| idas |

sunmemory

nvector

—Pl sundials

i
il

sunnonlinsol

Figure 3.2: Directory structure of the SUNDIALS source tree.

following is a list of the solver packages presently available, and the basic functionality of each:

e CVODE, a solver for stiff and nonstiff ODE systems dy/dt = f(t,y) based on Adams and BDF
methods;

e CVODES, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

e ARKODE, a solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems Mdy/dt =
fi(t,y) + fa(t,y) based on Runge-Kutta methods;

e DA, a solver for differential-algebraic systems F(t,y,y) = 0 based on BDF methods;
e IDAS, a solver for differential-algebraic systems with sensitivity analysis capabilities;
e KINSOL, a solver for nonlinear algebraic systems F'(u) = 0.

Note for modules that provide interfaces to third-party libraries (i.e., LAPACK, KLU, SUPERLUMT,
SuperLU_DIST, hypre, PETSc, Trilinos, and RAJA) users will need to download and compile those
packages independently.

3.2 CVODES organization

The cVvODES package is written in ANSI C. The following summarizes the basic structure of the
package, although knowledge of this structure is not necessary for its use.

The overall organization of the CVODES package is shown in Figure 3.3. The basic elements of the
structure are a module for the basic integration algorithm (including forward sensitivity analysis), a

3.2 CVODES organization 39

[CVODES H CVADJOINT]

] }

CVLS CVNLS
Linear Solver Interface Nonlinear Solver Interface
Vector | | Matrix | | Linear Solver | | Nonlinear Solver

CVDIAG - Diagonal
Linear Solver
A 4

Preconditioner Modules
(cvBBDPRE || CVBANDPRE |

Figure 3.3: Overall structure diagram of the CVODES package. Modules specific to CVODES begin with
“CV” (cvLs, CVNLS, CVDIAG, CVBBDPRE, and CVBANDPRE), all other items correspond to generic
SUNDIALS vector, matrix, and solver modules (see Figure 3.1).

module for adjoint sensitivity analysis, and support for the solution of nonlinear and linear systems
that arise in the case of a stiff system. The central integration module, implemented in the files
cvode.h, cvode_impl.h, and cvode.c, deals with the evaluation of integration coeflicients, estimation
of local error, selection of stepsize and order, and interpolation to user output points, among other
issues.

CVODES utilizes generic linear and nonlinear solver modules defined by the SUNLINSOL API (see
Chapter 11) and SUNNONLINSOL API (see Chapter 12), respectively. As such, CVODES has no knowl-
edge of the method being used to solve the linear and nonlinear systems that arise. For any given
user problem, there exists a single nonlinear solver interface and, if necessary, one of the linear system
solver interfaces is specified, and invoked as needed during the integration.

In addition, if forward sensitivity analysis is turned on, the main module will integrate the forward
sensitivity equations simultaneously with the original IVP. The sensitivity variables may be included
in the local error control mechanism of the main integrator. CVODES provides three different strategies
for dealing with the correction stage for the sensitivity variables: CV_SIMULTANEQUS, CV_STAGGERED
and CV_STAGGERED1 (see §2.6 and §5.2.1). The CcVODES package includes an algorithm for the ap-
proximation of the sensitivity equations right-hand sides by difference quotients, but the user has the
option of supplying these right-hand sides directly.

The adjoint sensitivity module (file cvodea. c) provides the infrastructure needed for the backward
integration of any system of ODEs which depends on the solution of the original IVP, in particular the
adjoint system and any quadratures required in evaluating the gradient of the objective functional.
This module deals with the setup of the checkpoints, the interpolation of the forward solution during
the backward integration, and the backward integration of the adjoint equations.

At present, the package includes two linear solver interfaces. The primary linear solver interface,
CVLS, supports both direct and iterative linear solvers built using the generic SUNLINSOL API (see
Chapter 11). These solvers may utilize a SUNMATRIX object (see Chapter 10) for storing Jacobian
information, or they may be matrix-free. Since CVODES can operate on any valid SUNLINSOL im-
plementation, the set of linear solver modules available to CVODES will expand as new SUNLINSOL
modules are developed.

40 Code Organization

Additionally, cVODES includes the diagonal linear solver interface, CVDIAG, that creates an inter-
nally generated diagonal approximation to the Jacobian.

For users employing dense or banded Jacobian matrices, CVODES includes algorithms for their
approximation through difference quotients, although the user also has the option of supplying a
routine to compute the Jacobian (or an approximation to it) directly. This user-supplied routine is
required when using sparse or user-supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, CVODES includes an algorithm for the
approximation by difference quotients of the product Mv. Again, the user has the option of providing
routines for this operation, in two phases: setup (preprocessing of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again
in two phases: setup and solve. While there is no default choice of preconditioner analogous to
the difference-quotient approximation in the direct case, the references [14, 16], together with the
example and demonstration programs included with CVODES, offer considerable assistance in building
preconditioners.

CVODES’ linear solver interface consists of four primary phases, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the integration, and only as required to achieve
convergence.

CVODES also provides two preconditioner modules, for use with any of the Krylov iterative linear
solvers. The first one, CVBANDPRE, is intended to be used with NVECTOR_SERIAL, NVECTOR_OPENMP
or NVECTOR_PTHREADS and provides a banded difference-quotient Jacobian-based preconditioner,
with corresponding setup and solve routines. The second preconditioner module, CVBBDPRE, works
in conjunction with NVECTOR_PARALLEL and generates a preconditioner that is a block-diagonal
matrix with each block being a banded matrix.

All state information used by CVODES to solve a given problem is saved in a structure, and a
pointer to that structure is returned to the user. There is no global data in the CVODES package, and
so, in this respect, it is reentrant. State information specific to the linear solver is saved in a separate
structure, a pointer to which resides in the CVODES memory structure. The reentrancy of CVODES was
motivated by the anticipated multicomputer extension, but is also essential in a uniprocessor setting
where two or more problems are solved by intermixed calls to the package from within a single user
program.

Chapter 4

Using CVODES for IVP Solution

This chapter is concerned with the use of CVODES for the solution of initial value problems (IVPs) in
a C language setting. The following sections treat the header files and the layout of the user’s main
program, and provide descriptions of the CVODES user-callable functions and user-supplied functions.
This usage is essentially equivalent to using CVODE [37].

The sample programs described in the companion document [56] may also be helpful. Those codes
may be used as templates (with the removal of some lines used in testing) and are included in the
CVODES package.

Users with applications written in FORTRAN should see Chapter 7?7, which describes interfacing
with CVODES from FORTRAN.

The user should be aware that not all SUNLINSOL and SUNMATRIX modules are compatible with
all NVECTOR implementations. Details on compatibility are given in the documentation for each
SUNMATRIX module (Chapter 10) and each SUNLINSOL module (Chapter 11). For example, NVEC-
TOR_PARALLEL is not compatible with the dense, banded, or sparse SUNMATRIX types, or with the
corresponding dense, banded, or sparse SUNLINSOL modules. Please check Chapters 10 and 11 to verify
compatibility between these modules. In addition to that documentation, we note that the CVBAND-
PRE preconditioning module is only compatible with the NVECTOR_SERIAL, NVECTOR_OPENMP, and
NVECTOR_PTHREADS vector implementations, and the preconditioner module CVBBDPRE can only
be used with NVECTOR_PARALLEL. It is not recommended to use a threaded vector module with
SuperLU_MT wunless it is the NVECTOR_OPENMP module, and SuperLU_MT is also compiled with
OpenMP.

CVODES uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of CVODES, following the procedure described in
Appendix A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by c¢VODES. The relevant library files are

e [ibdir/1libsundials_cvodes. [ib,
e [ibdir/1libsundials_nvecx. [ib,

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

e incdir/include/cvodes

e incdir/include/sundials

42 Using CVODES for IVP Solution

e incdir/include/nvector

e incdir/include/sunmatrix

e incdir/include/sunlinsol

e incdir/include/sunnonlinsol

The directories libdir and incdir are the install library and include directories, respectively. For
a default installation, these are instdir/1ib and instdir/include, respectively, where instdir is the
directory where SUNDIALS was installed (see Appendix A).

Note that an application cannot link to both the ¢cVODE and CVODES libraries because both
contain user-callable functions with the same names (to ensure that CVODES is backward compatible
with ¢vODE). Therefore, applications that contain both ODE problems and ODEs with sensitivity
analysis, should use CVODES.

4.2 Data Types

The sundials_types.h file contains the definition of the type realtype, which is used by the SUNDIALS
solvers for all floating-point data, the definition of the integer type sunindextype, which is used
for vector and matrix indices, and booleantype, which is used for certain logic operations within
SUNDIALS.

4.2.1 Floating point types

The type realtype can be float, double, or long double, with the default being double. The user
can change the precision of the SUNDIALS solvers arithmetic at the configuration stage (see §A.1.2).

Additionally, based on the current precision, sundials_types.h defines BIG_.REAL to be the largest
value representable as a realtype, SMALL_REAL to be the smallest value representable as a realtype,
and UNIT_ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “I.” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. SUNDIALS
uses the RCONST macro internally to declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs,
sqrt, exp, etc. in sundials_math.h. The macros are prefixed with SUNR and expand to the appro-
priate C function based on the realtype. For example, the macro SUNRabs expands to the C function
fabs when realtype is double, fabsf when realtype is float, and fabsl when realtype is long
double.

A user program which uses the type realtype, the RCONST macro, and the SUNR mathematical
function macros is precision-independent except for any calls to precision-specific library functions.
Our example programs use realtype, RCONST, and the SUNR macros. Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype) and call the appropriate math library functions directly. Thus, a previously existing
piece of ANSI C code can use SUNDIALS without modifying the code to use realtype, RCONST, or the
SUNR macros so long as the SUNDIALS libraries use the correct precision (for details see §A.1.2).

4.3 Header files 43

4.2.2 Integer types used for indexing

The type sunindextype is used for indexing array entries in SUNDIALS modules (e.g., vectors lengths
and matrix sizes) as well as for storing the total problem size. During configuration sunindextype
may be selected to be either a 32- or 64-bit signed integer with the default being 64-bit. See §A.1.2
for the configuration option to select the desired size of sunindextype. When using a 32-bit integer
the total problem size is limited to 23! — 1 and with 64-bit integers the limit is 263 — 1. For users with
problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype.

A user program which uses sunindextype to handle indices will work with both index storage types
except for any calls to index storage-specific external libraries. Our C and C++ example programs
use sunindextype. Users can, however, use any compatible type (e.g., int, long int, int32_t,
int64_t, or long long int) in their code, assuming that this usage is consistent with the typedef
for sunindextype on their architecture. Thus, a previously existing piece of ANSI C code can use
SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS libraries use the
appropriate index storage type (for details see §A.1.2).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

e cvodes/cvodes.h, the main header file for CVODES, which defines the several types and various
constants, and includes function prototypes. This includes the header file for cvLs,
cvodes/cvodes_1s.h.

Note that cvodes.h includes sundials_types.h, which defines the types realtype, sunindextype,
and booleantype and the constants SUNFALSE and SUNTRUE.

The calling program must also include an NVECTOR implementation header file, of the form
nvector/nvector_**x.h. See Chapter 9 for the appropriate name. This file in turn includes the
header file sundials nvector.h which defines the abstract N_-Vector data type.

If using a non-default nonlinear solver module, or when interacting with a SUNNONLINSOL module
directly, the calling program must also include a SUNNONLINSOL implementation header file, of the form
sunnonlinsol/sunnonlinsol_#**.h where *** is the name of the nonlinear solver module (see Chap-
ter 12 for more information). This file in turn includes the header file sundials nonlinearsolver.h
which defines the abstract SUNNonlinearSolver data type.

If using a nonlinear solver that requires the solution of a linear system of the form (2.6) (e.g., the
default Newton iteration), then a linear solver module header file will be required. The header files
corresponding to the various SUNDIALS-provided linear solver modules available for use with CVODES
are:

e Direct linear solvers:
— sunlinsol/sunlinsol dense.h, which is used with the dense linear solver module, SUN-

LINSOL_DENSE;

— sunlinsol/sunlinsol band.h, which is used with the banded linear solver module, SUN-
LINSOL_BAND;

— sunlinsol/sunlinsol_lapackdense.h, which is used with the LAPACK dense linear solver
module, SUNLINSOL_LAPACKDENSE;

— sunlinsol/sunlinsol_lapackband.h, which is used with the LAPACK banded linear
solver module, SUNLINSOL_LAPACKBAND;

— sunlinsol/sunlinsol klu.h, which is used with the KLU sparse linear solver module,
SUNLINSOL_KLU;

44 Using CVODES for IVP Solution

— sunlinsol/sunlinsol_superlumt.h, which is used with the SUPERLUMT sparse linear
solver module, SUNLINSOL_SUPERLUMT;

e Iterative linear solvers:

— sunlinsol/sunlinsol_spgmr.h, which is used with the scaled, preconditioned GMRES
Krylov linear solver module, SUNLINSOL_SPGMR;

— sunlinsol/sunlinsol_spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, SUNLINSOL_SPFGMR;

— sunlinsol/sunlinsol_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, SUNLINSOL_SPBCGS;

— sunlinsol/sunlinsol_sptfqmr.h, which is used with the scaled, preconditioned TFQMR
Krylov linear solver module, SUNLINSOL_SPTFQMR;

— sunlinsol/sunlinsol_pcg.h, which is used with the scaled, preconditioned CG Krylov
linear solver module, SUNLINSOL_PCG;

e cvodes/cvodes_diag.h, which is used with the CVDIAG diagonal linear solver module.

The header files for the SUNLINSOL_DENSE and SUNLINSOL_LAPACKDENSE linear solver modules
include the file sunmatrix/sunmatrix_dense.h, which defines the SUNMATRIX_DENSE matrix module,
as as well as various functions and macros acting on such matrices.

The header files for the SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND linear solver modules in-
clude the file sunmatrix/sunmatrix_band.h, which defines the SUNMATRIX_BAND matrix module, as
as well as various functions and macros acting on such matrices.

The header files for the SUNLINSOL_KLU and SUNLINSOL_SUPERLUMT sparse linear solvers include
the file sunmatrix/sunmatrix_sparse.h, which defines the SUNMATRIX_SPARSE matrix module, as
well as various functions and macros acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials_iterative.h,
which enumerates the kind of preconditioning, and (for the SPGMR and SPFGMR solvers) the choices
for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
cvsDiurnal kry_p example (see [56]), preconditioning is done with a block-diagonal matrix. For this,
even though the SUNLINSOL_SPGMR linear solver is used, the header sundials/sundials_dense.h is
included for access to the underlying generic dense matrix arithmetic routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of
an ODE IVP. Most of the steps are independent of the NVECTOR, SUNMATRIX, SUNLINSOL, and
SUNNONLINSOL implementations used. For the steps that are not, refer to Chapters 9, 10, 11, and 12
for the specific name of the function to be called or macro to be referenced.

1. Initialize parallel or multi-threaded environment, if appropriate

For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads
to use within the threaded vector functions, if used.

2. Set problem dimensions etc.
This generally includes the problem size N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vector of initial values

To set the vector yO of initial values, use the appropriate functions defined by the particular
NVECTOR implementation.

4.4 A skeleton of the user’s main program 45

For native SUNDIALS vector implementations (except the CUDA and RAJA-based ones), use a call
of the form y0 = N_VMake *x* (..., ydata) if the realtype array ydata containing the initial
values of y already exists. Otherwise, create a new vector by making a call of the form y0 =
N_VNew_x**(...), and then set its elements by accessing the underlying data with a call of the
form ydata = N_VGetArrayPointer(y0). See §9.3-9.6 for details.

For the hypre and PETSc vector wrappers, first create and initialize the underlying vector, and
then create an NVECTOR wrapper with a call of the form y0 = N_VMake_***(yvec), where yvec
is a hypre or PETSc vector. Note that calls like N_-VNew_***(...) and N_VGetArrayPointer(...)
are not available for these vector wrappers. See §9.7 and §9.8 for details.

If using either the CUDA- or RAJA-based vector implementations use a call of the form y0 =
N_VMake *** (..., c) where c is a pointer to a suncudavec or sunrajavec vector class if this class
already exists. Otherwise, create a new vector by making a call of the form y0 = N_VNew_x**(...),
and then set its elements by accessing the underlying data where it is located with a call of the
form N_VGetDeviceArrayPointer_s*x or N_VGetHostArrayPointer_s*x. Note that the vector
class will allocate memory on both the host and device when instantiated. See §9.9-9.11 for
details.

4. Create CVODES object

Call cvode mem = CVodeCreate(lmm) to create the CVODES memory block and to specify the
linear multistep method. CVodeCreate returns a pointer to the CVODES memory structure. See
§4.5.1 for details.

5. Initialize CVODES solver

Call CVodeInit(...) to provide required problem specifications, allocate internal memory for
CVODES, and initialize CVODES. CVodeInit returns a flag, the value of which indicates either
success or an illegal argument value. See §4.5.1 for details.

6. Specify integration tolerances

Call CVodeSStolerances(...) or CVodeSVtolerances(...) to specify either a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances, respectively. Alternatively, call CVodeWFtolerances to specify a function which sets
directly the weights used in evaluating WRMS vector norms. See §4.5.2 for details.

7. Create matrix object

If a nonlinear solver requiring a linear solve will be used (e.g., the default Newton iteration)
and the linear solver will be a matrix-based linear solver, then a template Jacobian matrix must
be created by calling the appropriate constructor function defined by the particular SUNMATRIX
implementation.

For the SUNDIALS-supplied SUNMATRIX implementations, the matrix object may be created using
a call of the form

SUNMatrix J

SUNBandMatrix(...);
or

SUNMatrix J

SUNDenseMatrix(...);
or

SUNMatrix J

SUNSparseMatrix(...);

NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.

8. Create linear solver object

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then

46 Using CVODES for IVP Solution
the desired linear solver object must be created by calling the appropriate constructor function
defined by the particular SUNLINSOL implementation.

For any of the SUNDIALS-supplied SUNLINSOL implementations, the linear solver object may be
created using a call of the form
SUNLinearSolver LS = SUNLinSol_*(...);
where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §4.5.3 and
Chapter 11.

9. Set linear solver optional inputs
Call *Set* functions from the selected linear solver module to change optional inputs specific to
that linear solver. See the documentation for each SUNLINSOL module in Chapter 11 for details.

10. Attach linear solver module
If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then
initialize the CVLS linear solver interface by attaching the linear solver object (and matrix object,
if applicable) with the call (for details see §4.5.3):
ier = CVodeSetLinearSolver(...);

Alternately, if the cvODES-specific diagonal linear solver module, CVDIAG, is desired, initialize the
linear solver module and attach it to CVODES with the call
ier = CVDiag(...);

11. Set optional inputs
Call CVodeSet* functions to change any optional inputs that control the behavior of CVODES from
their default values. See §4.5.7.1 and §4.5.7 for details.

12. Create nonlinear solver object (optional)

If using a non-default nonlinear solver (see §4.5.4), then create the desired nonlinear solver object
by calling the appropriate constructor function defined by the particular SUNNONLINSOL imple-
mentation (e.g., NLS = SUNNonlinSol #*x(...); where *** is the name of the nonlinear solver
(see Chapter 12 for details).

13. Attach nonlinear solver module (optional)

If using a non-default nonlinear solver, then initialize the nonlinear solver interface by attaching
the nonlinear solver object by calling ier = CVodeSetNonlinearSolver(cvode mem, NLS); (see
§4.5.4 for details).
14. Set nonlinear solver optional inputs (optional)
Call the appropriate set functions for the selected nonlinear solver module to change optional
inputs specific to that nonlinear solver. These must be called after CVodeInit if using the default
nonlinear solver or after attaching a new nonlinear solver to CVODE, otherwise the optional inputs
will be overridden by CVODES defaults. See Chapter 12 for more information on optional inputs.

15. Specify rootfinding problem
Optionally, call CVodeRootInit to initialize a rootfinding problem to be solved during the inte-
gration of the ODE system. See §4.5.5, and see §4.5.7.3 for relevant optional input calls.

16. Advance solution in time

For each point at which output is desired, call ier = CVode(cvode mem, tout, yout, &tret,
itask). Here itask specifies the return mode. The vector yout (which can be the same as the
vector yO above) will contain y(t). See §4.5.6 for details.

4.4 A skeleton of the user’s main program 47

17.

18.

19.

20.

21.

22.

Get optional outputs
Call CV*Get* functions to obtain optional output. See §4.5.9 for details.

Deallocate memory for solution vector

Upon completion of the integration, deallocate memory for the vector y (or yout) by calling the
appropriate destructor function defined by the NVECTOR implementation:

N_VDestroy (y);

Free solver memory

Call CVodeFree (&cvode mem) to free the memory allocated by CVODES.

Free nonlinear solver memory (optional)

If a non-default nonlinear solver was used, then call SUNNonlinSolFree (NLS) to free any memory
allocated for the SUNNONLINSOL object.

Free linear solver and matrix memory

Call SUNLinSolFree and SUNMatDestroy to free any memory allocated for the linear solver and
matrix objects created above.

Finalize MPI, if used

Call MPI Finalize() to terminate MPI.

SUNDIALS provides some linear solvers only as a means for users to get problems running and not

as highly efficient solvers. For example, if solving a dense system, we suggest using the LAPACK
solvers if the size of the linear system is > 50,000. (Thanks to A. Nicolai for his testing and rec-
ommendation.) Table 4.1 shows the linear solver interfaces available as SUNLINSOL modules and the
vector implementations required for use. As an example, one cannot use the dense direct solver inter-
faces with the MPI-based vector implementation. However, as discussed in Chapter 11 the SUNDIALS
packages operate on generic SUNLINSOL objects, allowing a user to develop their own solvers should
they so desire.

Table 4.1: SUNDIALS linear solver interfaces and vector implementations that can be used for each.

TS
U D = I N ,
FIEE |E|E|&|E|E|5 |58
Linear Solver | @ QCE \E./ C% HCL = | & 3 é S A
Dense | v v |V v
Band | v vV IV v
LapackDense | v/ v |V v
LapackBand | v/ v |V v
KLU | v v |V v
SUPERLUMT | v v |V v
SPGMR | v v VI IVIVIVI VIV v
SPFGMR. | v/ v VI VIV IVv IV |V v
SPBCGS | v v VIV IVIVIVvIVY v
SPTFQMR | v v VI I IVIVvIVv |V |V v
PCG | vV v VIVvIVIVIVIYV v
User Supp. | v v VI IVIVvIVv IV |V v

48 Using CVODES for IVP Solution

4.5 User-callable functions

This section describes the CVODES functions that are called by the user to setup and then solve an
IVP. Some of these are required. However, starting with §4.5.7, the functions listed involve optional
inputs/outputs or restarting, and those paragraphs may be skipped for a casual use of CVODES. In
any case, refer to §4.4 for the correct order of these calls.

On an error, each user-callable function returns a negative value and sends an error message to
the error handler routine, which prints the message on stderr by default. However, the user can set
a file as error output or can provide his own error handler function (see §4.5.7.1).

4.5.1 CVODES initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the IVP solution is complete, as it frees the CVODES memory block created and allocated by the first
two calls.

CVodeCreate

Call cvode_mem = CVodeCreate (1lmm) ;

Description The function CVodeCreate instantiates a CVODES solver object and specifies the solution
method.

Arguments 1mm (int) specifies the linear multistep method and must be one of two possible values:
CV_ADAMS or CV_BDF.

The recommended choices for 1mm are CV_ADAMS for nonstiff problems and CV_BDF for
stiff problems. The default Newton iteration is recommended for stiff problems, and
the fixed-point solver (previously referred to as the functional iteration in this guide) is
recommended for nonstiff problems. For details on how to attach a different nonlinear
solver module to CVODES see the description of CVodeSetNonlinearSolver.

Return value If successful, CVodeCreate returns a pointer to the newly created CVODES memory block
(of type void *). Otherwise, it returns NULL.

F2003 Name FCVodeCreate

CVodelnit

Call flag = CVodeInit(cvode mem, f, t0, y0);

Description The function CVodeInit provides required problem and solution specifications, allocates
internal memory, and initializes CVODES.
Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.
f (CVRhsFn) is the C function which computes the right-hand side function
f in the ODE. This function has the form £(t, y, ydot, user_data) (for
full details see §4.6.1).
t0 (realtype) is the initial value of t.
yO (N_Vector) is the initial value of y.

Return value The return value flag (of type int) will be one of the following;:

CV_SUCCESS The call to CVodeInit was successful.

CV_MEM_NULL The cVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_MEM_FAIL A memory allocation request has failed.
CV_ILL_INPUT An input argument to CVodeInit has an illegal value.

Notes If an error occurred, CVodeInit also sends an error message to the error handler func-
tion.

F2003 Name FCVodelInit

4.5 User-callable functions 49

CVodeFree

Call CVodeFree (&cvode_mem) ;

Description The function CVodeFree frees the memory allocated by a previous call to CVodeCreate.
Arguments The argument is the pointer to the CVODES memory block (of type void *).

Return value The function CVodeFree has no return value.

F2003 Name FCVodeFree

4.5.2 CVODES tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly
specify the weights used in evaluating WRMS vector norms). Note that this call must be made after
the call to CVodeInit.

’CVodeSStolerances

Call flag = CVodeSStolerances(cvode mem, reltol, abstol);
Description The function CVodeSStolerances specifies scalar relative and absolute tolerances.
Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.
reltol (realtype) is the scalar relative error tolerance.
abstol (realtype) is the scalar absolute error tolerance.
Return value The return value flag (of type int) will be one of the following;:

CV_SUCCESS The call to CVodeSStolerances was successful.

CV_MEM_NULL The cVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_MALLOC The allocation function CVodeInit has not been called.
CV_ILL_INPUT One of the input tolerances was negative.

F2003 Name FCVodeSStolerances

’CVodeSVtolerances

Call flag = CVodeSVtolerances(cvodemem, reltol, abstol);

Description The function CVodeSVtolerances specifies scalar relative tolerance and vector absolute
tolerances.

Arguments cvodemem (void *) pointer to the CVODES memory block returned by CVodeCreate.
reltol (realtype) is the scalar relative error tolerance.
abstol (N_Vector) is the vector of absolute error tolerances.

Return value The return value flag (of type int) will be one of the following;:

CV_SUCCESS The call to CVodeSVtolerances was successful.

CV_MEM NULL The cVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_MALLOC The allocation function CVodeInit has not been called.

CV_ILL_INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.

F2003 Name FCVodeSVtolerances

50 Using CVODES for IVP Solution

’CVodeWFtolerances

Call flag = CVodeWFtolerances(cvode mem, efun);

Description The function CVodeWFtolerances specifies a user-supplied function efun that sets the
multiplicative error weights W; for use in the weighted RMS norm, which are normally
defined by Eq. (2.8).

Arguments cvodemem (void *) pointer to the CVODES memory block returned by CVodeCreate.
efun (CVEwtFn) is the C function which defines the ewt vector (see §4.6.3).

Return value The return value flag (of type int) will be one of the following;:

CV_SUCCESS The call to CVodeWFtolerances was successful.

CV_.MEM_NULL The CcVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_MALLOC The allocation function CVodeInit has not been called.
F2003 Name FCVodeWFtolerances

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol = 1074
means that errors are controlled to .01%. We do not recommend using reltol larger than 1073,
On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 1.0E-15).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
cvsRoberts_dns in the CVODES package, and the discussion of it in the cVODES Examples document
[56]. In that problem, the three components vary betwen 0 and 1, and have different noise levels;
hence the abstol vector. It is impossible to give any general advice on abstol values, because the
appropriate noise levels are completely problem-dependent. The user or modeler hopefully has some
idea as to what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservatively, because they control the
error committed on each individual time step. The final (global) errors are some sort of accumulation
of those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from
the actual desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol
= 107%. But in any case, it is a good idea to do a few experiments with the tolerances to see how the
computed solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried by
the solver are unaffected. Remember that a small negative value in y returned by CVODES, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s right-hand side routine f should never change a negative value in the solution vector
y to a non-negative value, as a ”solution” to this problem. This can cause instability. If the £ routine

4.5 User-callable functions 51

cannot tolerate a zero or negative value (e.g. because there is a square root or log of it), then the
offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input y vector) for the purposes of computing f(¢,y).

(4) Positivity and non-negativity constraints on components can be enforced by use of the recover-
able error return feature in the user-supplied right-hand side function. However, because this option
involves some extra overhead cost, it should only be exercised if the use of absolute tolerances to
control the computed values is unsuccessful.

4.5.3 Linear solver interface functions

As previously explained, if the nonlinear solver requires the solution of linear systems of the form (2.6)
(e.g., the default Newton iteration), there are two CVODES linear solver interfaces currently available
for this task: CvLS and CVDIAG.

The first corresponds to the main linear solver interface in CVODES, that supports all valid SUN-
LINSOL modules. Here, matrix-based SUNLINSOL modules utilize SUNMATRIX objects to store the
approximate Jacobian matrix J = Jf/dy, the Newton matrix M = I — +.J, and factorizations used
throughout the solution process. Conversely, matrix-free SUNLINSOL modules instead use iterative
methods to solve the Newton systems of equations, and only require the action of the matrix on a
vector, Mv. With most of these methods, preconditioning can be done on the left only, the right only,
on both the left and right, or not at all. The exceptions to this rule are SPFGMR that supports right
preconditioning only and PCcG that performs symmetric preconditioning. For the specification of a
preconditioner, see the iterative linear solver sections in §4.5.7 and §4.6.

If preconditioning is done, user-supplied functions define linear operators corresponding to left and
right preconditioner matrices P; and Py (either of which could be the identity matrix), such that the
product Py P, approximates the matrix M = I —~J of (2.7).

The CVDIAG linear solver interface supports a direct linear solver, that uses only a diagonal ap-
proximation to J.

To specify a generic linear solver to CVODES, after the call to CVodeCreate but before any calls to
CVodes, the user’s program must create the appropriate SUNLinearSolver object and call the function
CVodeSetLinearSolver, as documented below. To create the SUNLinearSolver object, the user may
call one of the SUNDIALS-packaged SUNLINSOL module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_x*(...);

The current list of such constructor routines includes SUNLinSol _Dense, SUNLinSol_Band,
SUNLinSol_LapackDense, SUNLinSol_LapackBand, SUNLinSol_KLU, SUNLinSol_SuperLUMT,
SUNLinSol_SPGMR, SUNLinSol_SPFGMR, SUNLinSol_SPBCGS, SUNLinSol_SPTFQMR, and SUNLinSol_PCG.

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use
of each of the generic linear solvers involves certain constants, functions and possibly some macros,
that are likely to be needed in the user code. These are available in the corresponding header file
associated with the specific SUNMATRIX or SUNLINSOL module in question, as described in Chapters
10 and 11.

Once this solver object has been constructed, the user should attach it to CVODES via a call to
CVodeSetLinearSolver. The first argument passed to this function is the CVODES memory pointer
returned by CVodeCreate; the second argument is the desired SUNLINSOL object to use for solving
linear systems. The third argument is an optional SUNMATRIX object to accompany matrix-based
SUNLINSOL inputs (for matrix-free linear solvers, the third argument should be NULL). A call to this
function initializes the CVLS linear solver interface, linking it to the main CVODES integrator, and
allows the user to specify additional parameters and routines pertinent to their choice of linear solver.

To instead specify the CVODES-specific diagonal linear solver interface, the user’s program must
call CVDiag, as documented below. The first argument passed to this function is the CVODES memory
pointer returned by CVodeCreate.

52

Using CVODES for IVP Solution

’CVodeSetLinearSolver‘

Call

Description

Arguments

Return value

Notes

F2003 Name

Call

Description

Arguments

Return value

Notes

flag = CVodeSetLinearSolver(cvode mem, LS, J);

The function CVodeSetLinearSolver attaches a generic SUNLINSOL object LS and corre-
sponding template Jacobian SUNMATRIX object J (if applicable) to CVODES, initializing
the cVLS linear solver interface.

cvode mem (void *) pointer to the CVODES memory block.

LS (SUNLinearSolver) SUNLINSOL object to use for solving linear systems of
the form (2.6).
J (SUNMatrix) SUNMATRIX object for used as a template for the Jacobian (or

NULL if not applicable).
The return value flag (of type int) is one of

CVLS_SUCCESS The cVLS initialization was successful.

CVLS_MEM_NULL The cvode_mem pointer is NULL.

CVLS_ILL_INPUT The cVvLSs interface is not compatible with the LS or J input objects
or is incompatible with the current NVECTOR module.

CVLS_SUNLS_FAIL A call to the LS object failed.

CVLS_MEM_FAIL A memory allocation request failed.

If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used
in the solve process, so if additional storage is required within the SUNMATRIX object
(e.g. for factorization of a banded matrix), ensure that the input object is allocated
with sufficient size (see the documentation of the particular SUNMATRIX type in Chapter
10 for further information).

When using sparse linear solvers, it is typically much more efficient to supply J so
that it includes the full sparsity pattern of the Newton system matrices M = I — ~J,
even if J itself has zeros in nonzero locations of I. The reasoning for this is that M is
constructed in-place, on top of the user-specified values of J, so if the sparsity pattern
in J is insufficient to store M then it will need to be resized internally by CVODE.

The previous routines CVD1lsSetLinearSolver and CVSpilsSetLinearSolver are now
wrappers for this routine, and may still be used for backward-compatibility. However,
these will be deprecated in future releases, so we recommend that users transition to
the new routine name soon.

FCVodeSetLinearSolver

flag = CVDiag(cvode_mem) ;

The function CVDiag selects the CVDIAG linear solver.

The user’s main program must include the cvodes_diag.h header file.
cvode mem (void *) pointer to the CVODES memory block.

The return value flag (of type int) is one of:

CVDIAG_SUCCESS The CVDIAG initialization was successful.
CVDIAG.MEM_NULL The cvode_mem pointer is NULL.

CVDIAG_ILL_INPUT The CVDIAG solver is not compatible with the current NVECTOR
module.

CVDIAG_MEM FAIL A memory allocation request failed.

The CVDIAG solver is the simplest of all of the available CVODES linear solvers. The
CVDIAG solver uses an approximate diagonal Jacobian formed by way of a difference
quotient. The user does not have the option of supplying a function to compute an
approximate diagonal Jacobian.

4.5 User-callable functions 53

F2003 Name FCVDiag

4.5.4 Nonlinear solver interface function

By default CVODES uses the SUNNONLINSOL implementation of Newton’s method defined by the SUN-
NONLINSOL_NEWTON module (see §12.3). To specify a different nonlinear solver in CVODES, the user’s
program must create a SUNNONLINSOL object by calling the appropriate constructor routine. The user
must then attach the SUNNONLINSOL object by calling CVodeSetNonlinearSolver, as documented
below.

When changing the nonlinear solver in CVODES, CVodeSetNonlinearSolver must be called after
CVodeInit. If any calls to CVode have been made, then CVODES will need to be reinitialized by calling
CVodeReInit to ensure that the nonlinear solver is initialized correctly before any subsequent calls to
CVode.

The first argument passed to the routine CVodeSetNonlinearSolver is the CVODES memory
pointer returned by CVodeCreate and the second argument is the SUNNONLINSOL object to use for
solving the nonlinear system (2.4) or (2.5). A call to this function attaches the nonlinear solver to the
main CVODES integrator.

’CVodeSetNonlinearSolver‘

Call flag = CVodeSetNonlinearSolver (cvode mem, NLS);

Description The function CVodeSetNonLinearSolver attaches a SUNNONLINSOL object (NLS) to
CVODES.

Arguments cvode mem (void *) pointer to the CVODES memory block.
NLS (SUNNonlinearSolver) SUNNONLINSOL object to use for solving nonlinear
systems (2.4) or (2.5).
Return value The return value flag (of type int) is one of

CV_SUCCESS The nonlinear solver was successfully attached.

CV_.MEM_NULL The cvode_mem pointer is NULL.

CV_ILL_INPUT The SUNNONLINSOL object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual

function, convergence test function, or maximum number of nonlinear
iterations could not be set.

Notes When forward sensitivity analysis capabilities are enabled and the CV_STAGGERED or
CV_STAGGERED1 corrector method is used this function sets the nonlinear solver method
for correcting state variables (see §5.2.3 for more details).

F2003 Name FCVodeSetNonlinearSolver

4.5.5 Rootfinding initialization function

While solving the IVP, cVODES has the capability to find the roots of a set of user-defined functions.
To activate the root finding algorithm, call the following function. This is normally called only once,
prior to the first call to CVode, but if the rootfinding problem is to be changed during the solution,
CVodeRootInit can also be called prior to a continuation call to CVode.

[CVodeRootInit |

Call flag = CVodeRootInit(cvodemem, nrtfn, g);

Description The function CVodeRootInit specifies that the roots of a set of functions g;(t,y) are to
be found while the IVP is being solved.

Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.
nrtfn (int) is the number of root functions g;.

54 Using CVODES for IVP Solution

g (CVRootFn) is the C function which defines the nrtfn functions g;(t,y)
whose roots are sought. See §4.6.4 for details.

Return value The return value flag (of type int) is one of

CV_SUCCESS The call to CVodeRootInit was successful.
CV_MEM NULL The cvode mem argument was NULL.
CV_MEM_FAIL A memory allocation failed.

CV_ILL_INPUT The function g is NULL, but nrtfn > 0.

Notes If a new IVP is to be solved with a call to CVodeReInit, where the new IVP has no
rootfinding problem but the prior one did, then call CVodeRootInit with nrtfn= 0.

F2003 Name FCVodeRootInit

4.5.6 CVODES solver function

This is the central step in the solution process — the call to perform the integration of the IVP. One
of the input arguments (itask) specifies one of two modes as to where CVODES is to return a solution.
But these modes are modified if the user has set a stop time (with CVodeSetStopTime) or requested
rootfinding.

Call flag = CVode(cvode mem, tout, yout, &tret, itask);
Description The function CVode integrates the ODE over an interval in ¢.

Arguments cvode mem (void *) pointer to the CVODES memory block.

tout (realtype) the next time at which a computed solution is desired.

yout (N_Vector) the computed solution vector.

tret (realtype) the time reached by the solver (output).

itask (int) a flag indicating the job of the solver for the next user step. The

CV_NORMAL option causes the solver to take internal steps until it has reached
or just passed the user-specified tout parameter. The solver then interpo-
lates in order to return an approximate value of y(tout). The CV_ONE_STEP
option tells the solver to take just one internal step and then return the
solution at the point reached by that step.

Return value CVode returns a vector yout and a corresponding independent variable value ¢t = tret,
such that yout is the computed value of y(t).

In CV_NORMAL mode (with no errors), tret will be equal to tout and yout = y(tout).
The return value flag (of type int) will be one of the following:
CV_SUCCESS CVode succeeded and no roots were found.

CV_TSTOP_RETURN CVode succeeded by reaching the stopping point specified through

the optional input function CVodeSetStopTime (see §4.5.7.1).
CV_ROOT_RETURN CVode succeeded and found one or more roots. In this case,

tret is the location of the root. If nrtfn > 1, call CVodeGetRootInfo

to see which g; were found to have a root.

CV_MEM_NULL The cvode_mem argument was NULL.
CV_NO_MALLOC The cVODES memory was not allocated by a call to CVodeInit.
CV_ILL_INPUT One of the inputs to CVode was illegal, or some other input

to the solver was either illegal or missing. The latter cat-
egory includes the following situations: (a) The tolerances
have not been set. (b) A component of the error weight vec-
tor became zero during internal time-stepping. (c) The linear
solver initialization function (called by the user after calling

4.5 User-callable functions 55

Notes

CVodeCreate) failed to set the linear solver-specific 1solve
field in cvode mem. (d) A root of one of the root functions was
found both at a point ¢ and also very near t. In any case, the
user should see the error message for details.

CV_TO0_CLOSE The initial time tg and the output time %,,; are too close to
each other and the user did not specify an initial step size.

CV_TO0-MUCH_WORK The solver took mxstep internal steps but still could not reach
tout. The default value for mxstep is MXSTEP_DEFAULT = 500.

CV_TOO_MUCH_ACC The solver could not satisfy the accuracy demanded by the
user for some internal step.

CV_ERR_FAILURE Either error test failures occurred too many times (MXNEF =
7) during one internal time step, or with |h| = hpin.

CV_CONV_FAILURE Either convergence test failures occurred too many times (MXNCF
= 10) during one internal time step, or with |h| = hpip.

CV_LINIT FAIL The linear solver interface’s initialization function failed.

CV_LSETUP_FAIL The linear solver interface’s setup function failed in an unre-
coverable manner.

CV_LSOLVE_FAIL The linear solver interface’s solve function failed in an unre-
coverable manner.

CV_CONSTR_FAIL The inequality constraints were violated and the solver was
unable to recover.

CV_RHSFUNC_FAIL The right-hand side function failed in an unrecoverable man-
ner.

CV_FIRST RHSFUNC_FAIL The right-hand side function had a recoverable error at the
first call.

CV_REPTD_RHSFUNC_ERR Convergence test failures occurred too many times due to re-
peated recoverable errors in the right-hand side function. This
flag will also be returned if the right-hand side function had
repeated recoverable errors during the estimation of an initial
step size.

CV_UNREC_RHSFUNC_ERR The right-hand function had a recoverable error, but no re-
covery was possible. This failure mode is rare, as it can occur
only if the right-hand side function fails recoverably after an
error test failed while at order one.

CV_RTFUNC_FAIL The rootfinding function failed.

The vector yout can occupy the same space as the vector yO of initial conditions that
was passed to CVodeInit.

In the CV_ONE_STEP mode, tout is used only on the first call, and only to get the direction
and a rough scale of the independent variable.

If a stop time is enabled (through a call to CVodeSetStopTime), then CVode returns the
solution at tstop. Once the integrator returns at a stop time, any future testing for
tstop is disabled (and can be reenabled only though a new call to CVodeSetStopTime).

All failure return values are negative and so the test flag < 0 will trap all CVode
failures.

On any error return in which one or more internal steps were taken by CVode, the
returned values of tret and yout correspond to the farthest point reached in the inte-
gration. On all other error returns, tret and yout are left unchanged from the previous
CVode return.

F2003 Name FCVode

56

Using CVODES for IVP Solution

Table 4.2: Optional inputs for CVODES and CVLS

Optional input \ Function name \ Default
CVODES main solver
Pointer to an error file CVodeSetErrFile stderr
Error handler function CVodeSetErrHandlerFn internal fn.
User data CVodeSetUserData NULL
Maximum order for BDF method CVodeSetMax0rd 5
Maximum order for Adams method CVodeSetMaxOrd 12
Maximum no. of internal steps before oy CVodeSetMaxNumSteps 500
Maximum no. of warnings for ¢, + h =t, CVodeSetMaxHnilWarns 10
Flag to activate stability limit detection CVodeSetStabLimDet SUNFALSE
Initial step size CVodeSetInitStep estimated
Minimum absolute step size CVodeSetMinStep 0.0
Maximum absolute step size CVodeSetMaxStep 00
Value of t5¢0p CVodeSetStopTime undefined
Maximum no. of error test failures CVodeSetMaxErrTestFails 7
Maximum no. of nonlinear iterations CVodeSetMaxNonlinIters 3
Maximum no. of convergence failures CVodeSetMaxConvFails 10
Coefficient in the nonlinear convergence test CVodeSetNonlinConvCoef 0.1
RHS function for nonlinear system evaluations | CVodeSetNlsRhsFn NULL
Inequality constraints on solution CVodeSetConstraints NULL
Direction of zero-crossing CVodeSetRootDirection both
Disable rootfinding warnings CVodeSetNoInactiveRootWarn none
CVLS linear solver interface
Linear solver setup frequency CVodeSetLSetupFrequency 20
Jacobian / preconditioner update frequency CVodeSetJacEvalFrequency 51
Jacobian function CVodeSetJacFn DQ
Linear System function CVodeSetLinSysFn internal
Enable or disable linear solution scaling CVodeSetLinearSolutionScaling | on
Jacobian-times-vector functions CVodeSetJacTimes NULL, DQ
Jacobian-times-vector DQ RHS function CVodeSetJacTimesRhsFn NULL
Preconditioner functions CVodeSetPreconditioner NULL, NULL
Ratio between linear and nonlinear tolerances | CVodeSetEpsLin 0.05
Newton linear solve tolerance conversion factor | CVodeSetLSNormFactor vector length

4.5.7 Optional input functions

There are numerous optional input parameters that control the behavior of the CVODES solver. CVODES
provides functions that can be used to change these optional input parameters from their default
values. Table 4.2 lists all optional input functions in CVODES which are then described in detail in the
remainder of this section, begining with those for the main CVODES solver and continuing with those
for the linear solver interfaces. Note that the diagonal linear solver module has no optional inputs.
For the most casual use of CVODES, the reader can skip to §4.6.

We note that, on an error return, all of the optional input functions send an error message to the
error handler function. All error return values are negative, so the test flag < 0 will catch all errors.
Finally, a call to a CVodeSet*** function can be made from the user’s calling program at any time
and, if successful, takes effect immediately.

4.5.7.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if either of the functions CVodeSetErrFile
or CVodeSetErrHandlerFn is to be called, that call should be first, in order to take effect for any later

€rror message.

4.5 User-callable functions 57

’CVodeSetErrFile‘

Call flag = CVodeSetErrFile(cvode mem, errfp);

Description The function CVodeSetErrFile specifies a pointer to the file where all CVODES messages
should be directed when the default ¢CVODES error handler function is used.

Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

errfp (FILE *) pointer to output file.
The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes The default value for errfp is stderr.
Passing a value of NULL disables all future error message output (except for the case in
which the CVODES memory pointer is NULL). This use of CVodeSetErrFile is strongly
discouraged.
If CVodeSetErrFile is to be called, it should be called before any other optional input
functions, in order to take effect for any later error message.

F2003 Name FCVodeSetErrFile

’ CVodeSetErrHandlerFn ‘

Call flag = CVodeSetErrHandlerFn(cvode mem, ehfun, eh_data);

Description The function CVodeSetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

ehfun (CVErrHandlerFn) is the C error handler function (see §4.6.2).
eh data (void *) pointer to user data passed to ehfun every time it is called.

The return value flag (of type int) is one of

CV_SUCCESS The function ehfun and data pointer eh_data have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes Error messages indicating that the CVODES solver memory is NULL will always be directed
to stderr.

F2003 Name FCVodeSetErrHandlerFn

’CVodeSetUserData

Call flag = CVodeSetUserData(cvode mem, user_data);

Description The function CVodeSetUserData specifies the user data block user_data and attaches
it to the main CVvODES memory block.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes

F2003 Name

user_data (void #) pointer to the user data.
The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

If specified, the pointer to user_data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user_data is needed in user linear solver or preconditioner functions, the call to
CVodeSetUserData must be made before the call to specify the linear solver.

FCVodeSetUserData

58 Using CVODES for IVP Solution

’CVodeSetMaXOrd‘

Call flag = CVodeSetMaxOrd(cvode mem, maxord) ;

Description The function CVodeSetMaxOrd specifies the maximum order of the linear multistep
method.

Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

maxord (int) value of the maximum method order. This must be positive.
The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode mem pointer is NULL.
CV_ILL_INPUT The specified value maxord is < 0, or larger than its previous value.

Notes The default value is ADAMS_Q_MAX = 12 for the Adams-Moulton method and BDF_Q_MAX
= 5 for the BDF method. Since maxord affects the memory requirements for the internal
CVODES memory block, its value cannot be increased past its previous value.
An input value greater than the default will result in the default value.

F2003 Name FCVodeSetMaxOrd

CVodeSetMaxNumSteps

Call flag = CVodeSetMaxNumSteps(cvode mem, mxsteps);

Description The function CVodeSetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.

Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

mxsteps (long int) maximum allowed number of steps.
The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode mem pointer is NULL.

Notes Passing mxsteps = 0 results in CVODES using the default value (500).
Passing mxsteps < 0 disables the test (not recommended).

F2003 Name FCVodeSetMaxNumSteps

’ CVodeSetMaxHnilWarns ‘

Call flag = CVodeSetMaxHnilWarns(cvode mem, mxhnil);

Description The function CVodeSetMaxHnilWarns specifies the maximum number of messages issued
by the solver warning that ¢ +h =t on the next internal step.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes

F2003 Name

mxhnil (int) maximum number of warning messages (> 0).
The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

The default value is 10. A negative value for mxhnil indicates that no warning messages
should be issued.

FCVodeSetMaxHnilWarns

4.5 User-callable functions 59

’ CVodeSetStabLimDet ‘

Call flag = CVodeSetstabLimDet(cvode mem, stldet);

Description The function CVodeSetStabLimDet indicates if the BDF stability limit detection algo-
rithm should be used. See §2.3 for further details.
Arguments cvodemem (void *) pointer to the CVODES memory block.
stldet (booleantype) flag controlling stability limit detection (SUNTRUE = on;
SUNFALSE = off).

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode _mem pointer is NULL.
CV_ILL_INPUT The linear multistep method is not set to CV_BDF.
Notes The default value is SUNFALSE. If st1det = SUNTRUE when BDF is used and the method

order is greater than or equal to 3, then an internal function, CVsldet, is called to detect
a possible stability limit. If such a limit is detected, then the order is reduced.

F2003 Name FCVodeSetStabLimDet

CVodeSetInitStep‘

Call flag = CVodeSetInitStep(cvode mem, hin);
Description The function CVodeSetInitStep specifies the initial step size.

Arguments cvodemem (void *) pointer to the CVODES memory block.

hin (realtype) value of the initial step size to be attempted. Pass 0.0 to use
the default value.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes By default, CVODES estimates the initial step size to be the solution h of the equation
10.5R23j||wrms = 1, where §j is an estimated second derivative of the solution at t0.

F2003 Name FCVodeSetInitStep

CVodeSetMinStep‘

Call flag = CVodeSetMinStep(cvode mem, hmin);

Description The function CVodeSetMinStep specifies a lower bound on the magnitude of the step
size.

Arguments cvodemem (void *) pointer to the CVODES memory block.

hmin (realtype) minimum absolute value of the step size (> 0.0).
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode _mem pointer is NULL.

CV_ILL_INPUT Either hmin is nonpositive or it exceeds the maximum allowable step size.
Notes The default value is 0.0.
F2003 Name FCVodeSetMinStep

60 Using CVODES for IVP Solution

CVodeSetMaxStep

Call flag = CVodeSetMaxStep(cvode mem, hmax) ;

Description The function CVodeSetMaxStep specifies an upper bound on the magnitude of the step
size.

Arguments cvode mem (void *) pointer to the CVODES memory block.
hmax (realtype) maximum absolute value of the step size (> 0.0).
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_ILL_INPUT Either hmax is nonpositive or it is smaller than the minimum allowable
step size.

Notes Pass hmax = 0.0 to obtain the default value oo.
F2003 Name FCVodeSetMaxStep

CVodeSetStopTime

Call flag = CVodeSetStopTime(cvode mem, tstop);

Description The function CVodeSetStopTime specifies the value of the independent variable ¢ past
which the solution is not to proceed.

Arguments cvode mem (void *) pointer to the CVODES memory block.

tstop (realtype) value of the independent variable past which the solution should
not proceed.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_ILL_INPUT The value of tstop is not beyond the current ¢ value, t,.

Notes The default, if this routine is not called, is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and
can be reenabled only though a new call to CVodeSetStopTime).

F2003 Name FCVodeSetStopTime

’CVodeSetMaxErrTestFails

Call flag = CVodeSetMaxErrTestFails(cvode_mem, maxnef);

Description The function CVodeSetMaxErrTestFails specifies the maximum number of error test
failures permitted in attempting one step.

Arguments cvodemem (void *) pointer to the CVODES memory block.

maxnef (int) maximum number of error test failures allowed on one step (> 0).
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes The default value is 7.
F2003 Name FCVodeSetMaxErrTestFails

4.5 User-callable functions 61

’CVodeSetMaXNonlinIters

Call

Description

Arguments

Return value

flag = CVodeSetMaxNonlinIters(cvode mem, maxcor);

The function CVodeSetMaxNonlinIters specifies the maximum number of nonlinear
solver iterations permitted per step.

cvode mem (void *) pointer to the CVODES memory block.

maxcor (int) maximum number of nonlinear solver iterations allowed per step (> 0).
The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.

CV_MEM_NULL The cvode_mem pointer is NULL.

CV_MEM_FAIL The SUNNONLINSOL module is NULL.

Notes The default value is 3.

F2003 Name FCVodeSetMaxNonlinIters

’CVodeSetMaxConvFails‘

Call flag = CVodeSetMaxConvFails(cvode mem, maxncf);

Description The function CVodeSetMaxConvFails specifies the maximum number of nonlinear solver
convergence failures permitted during one step.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes
F2003 Name

maxncf (int) maximum number of allowable nonlinear solver convergence failures
per step (> 0).

The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

The default value is 10.
FCVodeSetMaxConvFails

’CVodeSetNonlinConvCoef‘

Call

Description

Arguments

Return value

flag = CVodeSetNonlinConvCoef (cvode mem, nlscoef);

The function CVodeSetNonlinConvCoef specifies the safety factor used in the nonlinear
convergence test (see §2.1).

cvode mem (void *) pointer to the CVODES memory block.
nlscoef (realtype) coefficient in nonlinear convergence test (> 0.0).

The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes The default value is 0.1.

F2003 Name FCVodeSetNonlinConvCoef

| CVodeSetN1sRhsFn

Call flag = CVodeSetNlsRhsFn(cvode mem, f);

Description The function CVodeSetNlsRhsFn specifies an alternative right-hand side function for
use in nonlinear system function evaluations.

Arguments cvodemem (void *) pointer to the CVODE memory block.

62 Using CVODES for IVP Solution

f (CVRhsFn) is the alternative C function which computes the right-hand side
function f in the ODE (for full details see §4.6.1).

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional function has been successfully set.
CV_MEM NULL The cvode_mem pointer is NULL.

Notes The default is to use the implicit right-hand side function provided to CVodeInit in
nonlinear system function evaluations. If the input right-hand side function is NULL, the
default is used.

When using a non-default nonlinear solver, this function must be called after CVodeSetNonlinearSolver.

When doing forward sensitivity analysis with the simultaneous solver strategy and a non-
default nonlinear solver, this function must be called after CVodeSetNonlinearSolverSensSim.

F2003 Name FCVodeSetNlsRhsFn

’ CVodeSetConstraints

Call flag = CVodeSetConstraints(cvode mem, constraints);

Description The function CVodeSetConstraints specifies a vector defining inequality constraints
for each component of the solution vector y.

Arguments cvodemem (void *) pointer to the CVODES memory block.
constraints (N_Vector) vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on y;.

1.0 then y; will be constrained to be y; > 0.0.
—1.0 then y; will be constrained to be y; < 0.0.

2.0 then y; will be constrained to be y; > 0.0.
—2.0 then y; will be constrained to be y; < 0.0.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_ILL_INPUT The constraints vector contains illegal values or the simultaneous correc-
tor option has been selected when doing forward sensitivity analysis.

Notes The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed. However, a call with 0.0 in all components
of constraints will result in an illegal input return. A NULL constraints vector will
disable constraint checking.

Constraint checking when doing forward sensitivity analysis with the simultaneous cor-
rector option is currently disallowed and will result in an illegal input return.

F2003 Name FCVodeSetConstraints

4.5.7.2 Linear solver interface optional input functions

The mathematical explanation of the linear solver methods available to CVODES is provided in §2.1.
We group the user-callable routines into four categories: general routines concerning the overall CVLS
linear solver interface, optional inputs for matrix-based linear solvers, optional inputs for matrix-free
linear solvers, and optional inputs for iterative linear solvers. We note that the matrix-based and
matrix-free groups are mutually exclusive, whereas the “iterative” tag can apply to either case.

As discussed in §2.1, CVODES strives to reuse matrix and preconditioner data for as many solves
as possible to amortize the high costs of matrix construction and factorization. To that end, CVODES
provides user-callable routines to modify this behavior. Recall that the Newton system matrices are
M(t,y) =1 —~J(t,y), where the right-hand side function has Jacobian matrix J(¢,y) = %‘Z’y).

4.5 User-callable functions 63

The matrix or preconditioner for M can only be updated within a call to the linear solver ‘setup’
routine. In general, the frequency with which this setup routine is called may be controlled with the
msbp argument to CVodeSetLSetupFrequency. When this occurs, the validity of M for successive
time steps intimately depends on whether the corresponding + and J inputs remain valid.

At each call to the linear solver setup routine the decision to update M with a new value of -,
and to reuse or reevaluate Jacobian information, depends on several factors including;:

e the success or failure of previous solve attempts,

e the success or failure of the previous time step attempts,

e the change in 7 from the value used when constructing M, and

e the number of steps since Jacobian information was last evaluated.

The frequency with which to update Jacobian information can be controlled with the msbj ar-
gument to CVodeSetJacEvalFrequency. We note that this is only checked within calls to the linear
solver setup routine, so values msbj < msbp do not make sense. For linear-solvers with user-supplied
preconditioning the above factors are used to determine whether to recommend updating the Jacobian
information in the preconditioner (i.e., whether to set jok to SUNFALSE in calling the user-supplied
preconditioner setup function (see §4.6.9). For matrix-based linear solvers these factors determine
whether the matrix J(t,y) = %;’y) should be updated (either with an internal finite difference ap-

proximation or a call to the user-supplied Jacobian function (see §4.6.5)); if not then the previous
value is reused and the system matrix M (¢,y) ~ I —~vJ(t, y) is recomputed using the current v value.

CVodeSetLSetupFrequency ‘

Call retval = CVodeSetLSetupFrequency(cvode mem, msbp);

Description The function CVodeSetLSetupFrequency specifies the frequency of calls to the linear
solver setup function.
Arguments cvodemem (void *) pointer to the CVODES memory block.
msbp (long int) the linear solver setup frequency.
Return value The return value flag (of type int) is one of
CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode _mem pointer is NULL.
CV_ILL_INPUT The frequency msbp is negative.

Notes Positive values of msbp specify the linear solver setup frequency. For example, an input
of 1 means the setup function will be called every time step while an input of 2 means
it will be called called every other time step. If msbp = 0, the default value of 20 will
be used. Otherwise an error is returned.

F2003 Name FCVodeSetLSetupFrequency

CVodeSetJacEvalFrequency

Call retval = CVodeSetJacEvalFrequency(cvode mem, msbj);

Description The function CVodeSetJacEvalFrequency specifies the frequency for recomputing the
Jacobian or recommending a preconditioner update.

Arguments cvode mem (void *) pointer to the CVODES memory block.
msbj (long int) the Jacobian re-computation or preconditioner update frequency.
Return value The return value flag (of type int) is one of

CVLS_SUCCESS The optional value has been successfully set.
CVLS_MEM_NULL The cvode_mem pointer is NULL.

64 Using CVODES for IVP Solution

CVLS_LMEM_NULL The cvLS linear solver interface has not been initialized.
CVLS_ILL_INPUT The frequency msbj is negative.

Notes The Jacobian update frequency is only checked within calls to the linear solver setup
routine, as such values of msbj < msbp will result in recomputing the Jacobian every
msbp steps. See CVodeSetLSetupFrequency for setting the linear solver setup frequency
msbp.

If msbj = 0, the default value of 51 will be used. Otherwise an error is returned.

This function must be called after the CVLS linear solver interface has been initialized
through a call to CVodeSetLinearSolver.

F2003 Name FCVodeSetJacEvalFrequency

When using matrix-based linear solver modules, the CVLS solver interface needs a function to
compute an approximation to the Jacobian matrix J(¢,y) or the linear system M = I —~J. The
function to evaluate J(t,y) the must be of type CVLsJacFn. The user can supply a Jacobian function,
or if using a dense or banded matrix J, can use the default internal difference quotient approximation
that comes with the cvLs solver. To specify a user-supplied Jacobian function jac, CVLS provides the
function CVodeSetJacFn. The CVLS interface passes the pointer user_data to the Jacobian function.
This allows the user to create an arbitrary structure with relevant problem data and access it during
the execution of the user-supplied Jacobian function, without using global data in the program. The
pointer user_data may be specified through CVodeSetUserData.

’CVodeSetJaan‘

Call flag = CVodeSetJacFn(cvode mem, jac);

Description The function CVodeSetJacFn specifies the Jacobian approximation function to be used
for a matrix-based solver within the CVLS interface.
Arguments cvodemem (void *) pointer to the CVODES memory block.

jac (CVLsJacFn) user-defined Jacobian approximation function.
Return value The return value flag (of type int) is one of

CVLS_SUCCESS The optional value has been successfully set.
CVLS_MEM_NULL The cvode mem pointer is NULL.
CVLS_LMEM_NULL The cVLS linear solver interface has not been initialized.

Notes This function must be called after the CVLS linear solver interface has been initialized
through a call to CVodeSetLinearSolver.

By default, cvLs uses an internal difference quotient function for dense and band ma-
trices. If NULL is passed to jac, this default function is used. An error will occur if no
jac is supplied when using other matrix types.

The function type CVLsJacFn is described in §4.6.5.

The previous routine CVD1sSetJacFn is now a wrapper for this routine, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.

F2003 Name FCVodeSetJacFn

To specify a user-supplied linear system function linsys, CVLS provides the function
CVodeSetLinSysFn. The CVLS interface passes the pointer user_data to the linear system function.
This allows the user to create an arbitrary structure with relevant problem data and access it during
the execution of the user-supplied linear system function, without using global data in the program.
The pointer user_data may be specified through CVodeSetUserData.

4.5 User-callable functions 65

CVodeSetLinSysFn

Call flag = CVodeSetLinSysFn(cvode mem, linsys);

Description The function CVodeSetLinSysFn specifies the linear system approximation function to
be used for a matrix-based solver within the cvLS interface.

Arguments cvode mem (void *) pointer to the CVODES memory block.
linsys (CVLsLinSysFn) user-defined linear system approximation function.

Return value The return value flag (of type int) is one of

CVLS_SUCCESS The optional value has been successfully set.
CVLS_MEM NULL The cvode mem pointer is NULL.
CVLS_LMEM NULL The cVLS linear solver interface has not been initialized.

Notes This function must be called after the CVLS linear solver interface has been initialized
through a call to CVodeSetLinearSolver.

By default, CVLS uses an internal linear system function leveraging the SUNMATRIX API
to form the system M = I —~J using either an internal finite difference approximation
or user-supplied function to compute the Jacobian. If linsys is NULL, this default
function is used.

The function type CVLsLinSysFn is described in §4.6.6.
F2003 Name FCVodeSetLinSysFn

When using a matrix-based linear solver the matrix information will be updated infrequently to
reduce matrix construction and, with direct solvers, factorization costs. As a result the value of
v may not be current and, with BDF methods, a scaling factor is applied to the solution of the
linear system to account for the lagged value of «. See §11.4.1 for more details. The function
CVodeSetLinearSolutionScaling can be used to disable this scaling when necessary, e.g., when
providing a custom linear solver that updates the matrix using the current « as part of the solve.

CVodeSetLinearSolutionScaling

Call flag = CVodeSetLinearSolutionScaling(cvode mem, onoff);

Description The function CVodeSetLinearSolutionScaling enables or disables scaling the linear
system solution to account for a change in v in the linear system. For more details see

§11.4.1.
Arguments cvode mem (void *) pointer to the CVODES memory block.
onoff (booleantype) flag to enable (SUNTRUE) or disable (SUNFALSE) scaling

Return value The return value flag (of type int) is one of

CVLS_SUCCESS The flag value has been successfully set.

CVLS_MEM NULL The cvode mem pointer is NULL.

CVLS_LMEM_NULL The cVLS linear solver interface has not been initialized.

CVLS_ILL_INPUT The attached linear solver is not matrix-based or the linear multistep
method type is not BDF.

Notes This function must be called after the CVLS linear solver interface has been initialized
through a call to CVodeSetLinearSolver.

By default scaling is enabled with matrix-based linear solvers when using BDF methods.
F2003 Name FCVodeSetLinearSolutionScaling

When using matrix-free linear solver modules, the CVLS solver interface requires a function to compute
an approximation to the product between the Jacobian matrix J(t,y) and a vector v. The user can
supply a Jacobian-times-vector approximation function or use the default internal difference quotient
function that comes with the CVLS interface.

66 Using CVODES for IVP Solution

A user-defined Jacobian-vector product function must be of type CVLsJacTimesVecFn and can be
specified through a call to CVodeSetJacTimes (see §4.6.7 for specification details). The evaluation and
processing of any Jacobian-related data needed by the user’s Jacobian-times-vector function may be
done in the optional user-supplied function jtsetup (see §4.6.8 for specification details). The pointer
user_data received through CVodeSetUserData (or a pointer to NULL if user_data was not specified)
is passed to the Jacobian-times-vector setup and product functions, jtsetup and jtimes, each time
they are called. This allows the user to create an arbitrary structure with relevant problem data and
access it during the execution of the user-supplied functions without using global data in the program.

’ CVodeSetJacTimes ‘

Call flag = CVodeSetJacTimes(cvode mem, jtsetup, jtimes);

Description The function CVodeSetJacTimes specifies the Jacobian-vector setup and product func-
tions.
Arguments cvodemem (void *) pointer to the CVODES memory block.

jtsetup (CVLsJacTimesSetupFn) user-defined Jacobian-vector setup function. Pass
NULL if no setup is necessary.

jtimes (CVLsJacTimesVecFn) user-defined Jacobian-vector product function.
Return value The return value flag (of type int) is one of

CVLS_SUCCESS The optional value has been successfully set.
CVLS_MEM NULL The cvode_mem pointer is NULL.
CVLS_LMEM_NULL The cvLs linear solver has not been initialized.

CVLS_SUNLS_FAIL An error occurred when setting up the system matrix-times-vector
routines in the SUNLINSOL object used by the CVLS interface.

Notes The default is to use an internal finite difference quotient for jtimes and to omit
jtsetup. If NULL is passed to jtimes, these defaults are used. A user may specify
non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the CVLS linear solver interface has been initialized
through a call to CVodeSetLinearSolver.

The function type CVLsJacTimesSetupFn is described in §4.6.8.
The function type CVLsJacTimesVecFn is described in §4.6.7.

The previous routine CVSpilsSetJacTimes is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FCVodeSetJacTimes

When using the internal difference quotient the user may optionally supply an alternative right-hand
side function for use in the Jacobian-vector product approximation by calling CVodeSetJacTimesRhsFn.
The alternative right-hand side function should compute a suitable (and differentiable) approximation
to the right-hand side function provided to CVodeInit. For example, as done in [26], the alterna-
tive function may use lagged values when evaluating a nonlinearity in the right-hand side to avoid
differencing a potentially non-differentiable factor.

’ CVodeSetJacTimesRhsFn ‘
Call flag = CVodeSetJacTimesRhsFn(cvode mem, jtimesRhsFn);

Description The function CVodeSetJacTimesRhsFn specifies an alternative ODE right-hand side
function for use in the internal Jacobian-vector product difference quotient approxima-
tion.

Arguments cvode_mem (void *) pointer to the CVODES memory block.

4.5 User-callable functions 67

jtimesRhsFn (CVRhsFn) is the C function which computes the alternative ODE right-
hand side function to use in Jacobian-vector product difference quotient

approximations. This function has the form £(t, y, ydot, user_data)
(for full details see §4.6.1).

Return value The return value flag (of type int) is one of

CVLS_SUCCESS The optional value has been successfully set.
CVLS_MEM_NULL The cvode_mem pointer is NULL.

CVLS_LMEM NULL The cvLs linear solver has not been initialized.
CVLS_ILL_INPUT The internal difference quotient approximation is disabled.

Notes The default is to use the right-hand side function provided to CVodeInit in the internal
difference quotient. If the input right-hand side function is NULL, the default is used.

This function must be called after the CVLS linear solver interface has been initialized
through a call to CVodeSetLinearSolver.

F2003 Name FCVodeSetJacTimesRhsFn

When using an iterative linear solver, the user may supply a preconditioning operator to aid in solution
of the system. This operator consists of two user-supplied functions, psetup and psolve, that are
supplied to CVODES using the function CVodeSetPreconditioner. The psetup function supplied to
this routine should handle evaluation and preprocessing of any Jacobian data needed by the user’s
preconditioner solve function, psolve. The user data pointer received through CVodeSetUserData (or
a pointer to NULL if user data was not specified) is passed to the psetup and psolve functions. This
allows the user to create an arbitrary structure with relevant problem data and access it during the
execution of the user-supplied preconditioner functions without using global data in the program.

Also, as described in §2.1, the CVLS interface requires that iterative linear solvers stop when the
norm of the preconditioned residual satisfies

€L €

r| < —
Il < &
where € is the nonlinear solver tolerance, and the default e; = 0.05; this value may be modified by
the user through the CVodeSetEpsLin function.

’CVodeSetPreconditioner‘

Call flag = CVodeSetPreconditioner(cvode_mem, psetup, psolve);

Description The function CVodeSetPreconditioner specifies the preconditioner setup and solve
functions.
Arguments cvode mem (void *) pointer to the CVODES memory block.

psetup (CVLsPrecSetupFn) user-defined preconditioner setup function. Pass NULL
if no setup is necessary.

psolve (CVLsPrecSolveFn) user-defined preconditioner solve function.
Return value The return value flag (of type int) is one of

CVLS_SUCCESS The optional values have been successfully set.

CVLS_MEM_NULL The cvode mem pointer is NULL.

CVLS_LMEM_NULL The CVLS linear solver has not been initialized.

CVLS_SUNLS_FAIL An error occurred when setting up preconditioning in the SUNLINSOL
object used by the CVLS interface.

Notes The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the CVLS linear solver interface has been initialized
through a call to CVodeSetLinearSolver.

The function type CVLsPrecSolveFn is described in §4.6.9.

68 Using CVODES for IVP Solution
The function type CVLsPrecSetupFn is described in §4.6.10.
The previous routine CVSpilsSetPreconditioner is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

F2003 Name FCVodeSetPreconditioner

CVodeSetEpsLin

Call flag = CVodeSetEpsLin(cvode mem, eplifac);

Description The function CVodeSetEpsLin specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the nonlinear solver test constant.

Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

Notes

F2003 Name

eplifac (realtype) linear convergence safety factor (> 0.0).
The return value flag (of type int) is one of

CVLS_SUCCESS The optional value has been successfully set.
CVLS_MEM NULL The cvode mem pointer is NULL.
CVLS_LMEM_NULL The cVLS linear solver has not been initialized.
CVLS_ILL_INPUT The factor eplifac is negative.

The default value is 0.05.

This function must be called after the cvLs linear solver interface has been initialized
through a call to CVodeSetLinearSolver.

If eplifac= 0.0 is passed, the default value is used.

The previous routine CVSpilsSetEpsLin is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

FCVodeSetEpsLin

’ CVodeSetLSNormFactor

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = CVodeSetLSNormFactor(cvode mem, nrmfac);

The function CVodeSetLSNormFactor specifies the factor to use when converting from
the integrator tolerance (WRMS norm) to the linear solver tolerance (L2 norm) for
Newton linear system solves e.g., tol L2 = fac * tol_WRMS.
cvode mem (void *) pointer to the CVODES memory block.
nrmfac (realtype) the norm conversion factor. If nrmfac is:

> 0 then the provided value is used.

= 0 then the conversion factor is computed using the vector length i.e.,
nrmfac = N_VGetLength(y) (default).

< 0 then the conversion factor is computed using the vector dot product
nrmfac = N_VDotProd(v,v) where all the entries of v are one.
The return value flag (of type int) is one of
CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode _mem pointer is NULL.

This function must be called after the cvLs linear solver interface has been initialized
through a call to CVodeSetLinearSolver.

Prior to the introduction of N_-VGetLength in SUNDIALS v5.0.0 (CVODES v5.0.0) the value
of nrmfac was computed using the vector dot product i.e., the nrmfac < 0 case.

FCVodeSetLSNormFactor

4.5 User-callable functions 69

4.5.7.3 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm.

’ CVodeSetRootDirection ‘

Call flag = CVodeSetRootDirection(cvode mem, rootdir);

Description The function CVodeSetRootDirection specifies the direction of zero-crossings to be
located and returned.
Arguments cvodemem (void *) pointer to the CVODES memory block.

rootdir (int *) state array of length nrtfn, the number of root functions g;, as spec-
ified in the call to the function CVodeRootInit. A value of O for rootdir [i]
indicates that crossing in either direction for g; should be reported. A value
of +1 or —1 indicates that the solver should report only zero-crossings where
g; is increasing or decreasing, respectively.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode _mem pointer is NULL.
CV_ILL_INPUT rootfinding has not been activated through a call to CVodeRootInit.

Notes The default behavior is to monitor for both zero-crossing directions.

F2003 Name FCVodeSetRootDirection

’ CVodeSetNoInactiveRootWarn

Call flag = CVodeSetNoInactiveRootWarn(cvode mem) ;

Description The function CVodeSetNoInactiveRootWarn disables issuing a warning if some root
function appears to be identically zero at the beginning of the integration.

Arguments cvodemem (void *) pointer to the CVODES memory block.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes CcVODES will not report the initial conditions as a possible zero-crossing (assuming that
one or more components g; are zero at the initial time). However, if it appears that
some g; is identically zero at the initial time (i.e., g; is zero at the initial time and after
the first step), CVODES will issue a warning which can be disabled with this optional
input function.

F2003 Name FCVodeSetNoInactiveRootWarn

4.5.8 Interpolated output function

An optional function CVodeGetDky is available to obtain additional output values. This function
should only be called after a successful return from CVode as it provides interpolated values either of
y or of its derivatives (up to the current order of the integration method) interpolated to any value of
t in the last internal step taken by CVODES.

The call to the CVodeGetDky function has the following form:

70 Using CVODES for IVP Solution

CVodeGetDky

Call flag = CVodeGetDky(cvode mem, t, k, dky);

Description The function CVodeGetDky computes the k-th derivative of the function y at time t, i.e.
d(’“)y/dt(k)(t)7 where t,, —h, <t < t,, t, denotes the current internal time reached, and
h,, is the last internal step size successfully used by the solver. The user may request k
=0,1,...,qu, where g, is the current order (optional output qlast).

Arguments cvodemem (void *) pointer to the CVODES memory block.

t (realtype) the value of the independent variable at which the derivative is
to be evaluated.

k (int) the derivative order requested.

dky (N_Vector) vector containing the derivative. This vector must be allocated
by the user.

Return value The return value flag (of type int) is one of

CV_SUCCESS CVodeGetDky succeeded.

CV_BAD K k is not in the range 0,1,...,q,.
CV_BAD_T t is not in the interval [t,, — hy, t,].
CV_BAD.DKY The dky argument was NULL.
CV_MEM_NULL The cvode_mem argument was NULL.

Notes It is only legal to call the function CVodeGetDky after a successful return from CVode.
See CVodeGetCurrentTime, CVodeGetLastOrder, and CVodeGetLastStep in the next
section for access to t,, qu, and h,, respectively.

F2003 Name FCVodeGetDky

4.5.9 Optional output functions

CVODES provides an extensive set of functions that can be used to obtain solver performance infor-
mation. Table 4.3 lists all optional output functions in CVODES, which are then described in detail in
the remainder of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining
how successful the CVODES solver is in doing its job. For example, the counters nsteps and nfevals
provide a rough measure of the overall cost of a given run, and can be compared among runs with
differing input options to suggest which set of options is most efficient. The ratio nniters/nsteps
measures the performance of the nonlinear solver in solving the nonlinear systems at each time step;
typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of a matrix-
based linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure
the overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian
or preconditioner being used. Thus, for example, njevals/nniters can indicate if a user-supplied
Jacobian is inaccurate, if this ratio is larger than for the case of the corresponding internal Jacobian.
The ratio nliters/nniters measures the performance of the Krylov iterative linear solver, and thus
(indirectly) the quality of the preconditioner.

4.5.9.1 SUNDIALS version information

The following functions provide a way to get SUNDIALS version information at runtime.

| SUNDIALSGetVersion |
Call flag = SUNDIALSGetVersion(version, len);

Description The function SUNDIALSGetVersion fills a character array with SUNDIALS version infor-
mation.

4.5 User-callable functions

71

Table 4.3: Optional outputs from CVODES, CVLS, and CVDIAG

Optional output

\ Function name

CVODES main solver

Size of CVODES real and integer workspaces
Cumulative number of internal steps

No. of calls to r.h.s. function

No. of calls to linear solver setup function

No. of local error test failures that have occurred
Order used during the last step

Order to be attempted on the next step

No. of order reductions due to stability limit detection
Actual initial step size used

Step size used for the last step

Step size to be attempted on the next step
Current internal time reached by the solver
Suggested factor for tolerance scaling

Error weight vector for state variables
Estimated local error vector

No. of nonlinear solver iterations

No. of nonlinear convergence failures

All CcVODES integrator statistics

CVODES nonlinear solver statistics

Array showing roots found

No. of calls to user root function

Name of constant associated with a return flag

CVodeGetWorkSpace
CVodeGetNumSteps
CVodeGetNumRhsEvals
CVodeGetNumLinSolvSetups
CVodeGetNumErrTestFails
CVodeGetLastOrder
CVodeGetCurrentOrder
CVodeGetNumStabLimOrderReds
CVodeGetActualInitStep
CVodeGetLastStep
CVodeGetCurrentStep
CVodeGetCurrentTime
CVodeGetTolScaleFactor
CVodeGetErrWeights
CVodeGetEstLocalErrors
CVodeGetNumNonlinSolvIters

CVodeGetIntegratorStats
CVodeGetNonlinSolvStats
CVodeGetRootInfo
CVodeGetNumGEvals
CVodeGetReturnFlagName

CVodeGetNumNonlinSolvConvFails

CVLS linear solver interface

Size of real and integer workspaces
No. of Jacobian evaluations

No. of linear iterations

No. of linear convergence failures

No. of preconditioner evaluations

No. of preconditioner solves

No. of Jacobian-vector setup evaluations

No. of Jacobian-vector product evaluations
Last return from a linear solver function
Name of constant associated with a return flag

No. of r.h.s. calls for finite diff. Jacobian[-vector] evals.

CVodeGetLinWorkSpace
CVodeGetNumJacEvals
CVodeGetNumLinRhsEvals
CVodeGetNumLinIters
CVodeGetNumLinConvFails
CVodeGetNumPrecEvals
CVodeGetNumPrecSolves
CVodeGetNumJTSetupEvals
CVodeGetNumJtimesEvals
CVodeGetLastLinFlag
CVodeGetLinReturnFlagName

CVDIAG linear solver interface

Size of CVDIAG real and integer workspaces
No. of r.h.s. calls for finite diff. Jacobian evals.
Last return from a CVDIAG function

Name of constant associated with a return flag

CVDiagGetWorkSpace
CVDiagGetNumRhsEvals
CVDiagGetLastFlag
CVDiagGetReturnFlagName

72 Using CVODES for IVP Solution

Arguments version (char *) character array to hold the SUNDIALS version information.
len (int) allocated length of the version character array.
Return value If successful, SUNDIALSGetVersion returns 0 and version contains the SUNDIALS ver-

sion information. Otherwise, it returns —1 and version is not set (the input character
array is too short).

Notes A string of 25 characters should be sufficient to hold the version information. Any
trailing characters in the version array are removed.

| SUNDIALSGetVersionNumber |
Call flag = SUNDIALSGetVersionNumber(&major, &minor, &patch, label, len);

Description The function SUNDIALSGetVersionNumber set integers for the SUNDIALS major, minor,
and patch release numbers and fills a character array with the release label if applicable.

Arguments major (int) SUNDIALS release major version number.
minor (int) SUNDIALS release minor version number.
patch (int) SUNDIALS release patch version number.
label (char *) character array to hold the SUNDIALS release label.
len (int) allocated length of the label character array.
Return value If successful, SUNDIALSGetVersionNumber returns 0 and the major, minor, patch, and

label values are set. Otherwise, it returns —1 and the values are not set (the input
character array is too short).

Notes A string of 10 characters should be sufficient to hold the label information. If a label
is not used in the release version, no information is copied to label. Any trailing
characters in the label array are removed.

4.5.9.2 Main solver optional output functions

CVODES provides several user-callable functions that can be used to obtain different quantities that
may be of interest to the user, such as solver workspace requirements, solver performance statistics,
as well as additional data from the CVODES memory block (a suggested tolerance scaling factor,
the error weight vector, and the vector of estimated local errors). Functions are also provided to
extract statistics related to the performance of the CVODES nonlinear solver used. As a convenience,
additional information extraction functions provide the optional outputs in groups. These optional
output functions are described next.

CVodeGetWorkSpace‘

Call flag = CVodeGetWorkSpace(cvode mem, &lenrw, &leniw);
Description The function CVodeGetWorkSpace returns the CVODES real and integer workspace sizes.
Arguments cvode mem (void *) pointer to the CVODES memory block.
lenrw (long int) the number of realtype values in the CVODES workspace.
leniw (long int) the number of integer values in the CVODES workspace.
Return value The return value flag (of type int) is one of
CV_SUCCESS The optional output values have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes In terms of the problem size IV, the maximum method order maxord, and the number
nrtfn of root functions (see §4.5.5), the actual size of the real workspace, in realtype
words, is given by the following:

e base value: lenrw = 96 + (maxord+5) * N, + 3snrtfn;

4.5 User-callable functions 73

e using CVodeSVtolerances: lenrw = lenrw +1NV,;

e with constraint checking (see CVodeSetConstraints): lenrw = lenrw +N,;

where N, is the number of real words in one N_Vector (= N).
The size of the integer workspace (without distinction between int and long int words)
is given by:

e base value: leniw = 40 + (maxord+5) * N; + nrtfn;

e using CVodeSVtolerances: leniw = leniw +1/V;;

e with constraint checking: lenrw = lenrw +N;;
where N; is the number of integer words in one N_Vector (= 1 for NVECTOR_SERIAL
and 2*npes for NVECTOR_PARALLEL and npes processors).
For the default value of maxord, no rootfinding, no constraints, and without using
CVodeSVtolerances, these lengths are given roughly by:

e For the Adams method: lenrw = 96 + 17N and leniw = 57

e For the BDF method: lenrw = 96 + 10N and leniw = 50

Note that additional memory is allocated if quadratures and/or forward sensitivity
integration is enabled. See §4.7.1 and §5.2.1 for more details.

F2003 Name FCVodeGetWorkSpace

CVodeGetNumSteps‘

Call flag = CVodeGetNumSteps (cvode mem, &nsteps);

Description The function CVodeGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

nsteps (long int) number of steps taken by CVODES.
The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

F2003 Name FCVodeGetNumSteps

| CVodeGetNumRhsEvals |

Call flag = CVodeGetNumRhsEvals(cvode mem, &nfevals);

Description The function CVodeGetNumRhsEvals returns the number of calls to the user’s right-hand
side function.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes

F2003 Name

nfevals (long int) number of calls to the user’s £ function.
The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

The nfevals value returned by CVodeGetNumRhsEvals does not account for calls made
to £ by a linear solver or preconditioner module.

FCVodeGetNumRhsEvals

74 Using CVODES for IVP Solution

CVodeGetNumLinSolvSetups

Call flag = CVodeGetNumLinSolvSetups(cvode mem, &nlinsetups);

Description The function CVodeGetNumLinSolvSetups returns the number of calls made to the
linear solver’s setup function.

Arguments cvodemem (void *) pointer to the CVODES memory block.
nlinsetups (long int) number of calls made to the linear solver setup function.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

F2003 Name FCVodeGetNumLinSolvSetups

’CVodeGetNumErrTestFails

Call flag = CVodeGetNumErrTestFails(cvode mem, &netfails);

Description The function CVodeGetNumErrTestFails returns the number of local error test failures
that have occurred.

Arguments cvode mem (void *) pointer to the CVODES memory block.
netfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

F2003 Name FCVodeGetNumErrTestFails

’CVodeGetLastOrder‘
Call flag = CVodeGetLastOrder(cvode mem, &glast);

Description The function CVodeGetLastOrder returns the integration method order used during the
last internal step.

Arguments cvode mem (void *) pointer to the CVODES memory block.
qlast (int) method order used on the last internal step.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM NULL The cvode_mem pointer is NULL.

F2003 Name FCVodeGetLastOrder

’CVodeGetCurrentOrder

Call flag = CVodeGetCurrentOrder (cvode mem, &qcur);

Description The function CVodeGetCurrentOrder returns the integration method order to be used
on the next internal step.

Arguments cvode mem (void *) pointer to the CVODES memory block.
qcur (int) method order to be used on the next internal step.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

F2003 Name FCVodeGetCurrentOrder

4.5 User-callable functions 75

CVodeGetLastStep

Call flag = CVodeGetLastStep(cvode mem, &hlast);

Description The function CVodeGetLastStep returns the integration step size taken on the last
internal step.

Arguments cvode mem (void *) pointer to the CVODES memory block.
hlast (realtype) step size taken on the last internal step.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

F2003 Name FCVodeGetLastStep

CVodeGetCurrentStep

Call flag = CVodeGetCurrentStep(cvode mem, &hcur);

Description The function CVodeGetCurrentStep returns the integration step size to be attempted
on the next internal step.

Arguments cvodemem (void *) pointer to the CVODES memory block.
hcur (realtype) step size to be attempted on the next internal step.

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

F2003 Name FCVodeGetCurrentStep

CVodeGetActualInitStep

Call flag = CVodeGetActualInitStep(cvode mem, &hinused);

Description The function CVodeGetActualInitStep returns the value of the integration step size
used on the first step.

Arguments cvodemem (void *) pointer to the CVODES memory block.
hinused (realtype) actual value of initial step size.

Return value The return value flag (of type int) is one of
CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through
a call to CVodeSetInitStep, this value might have been changed by CVODES to ensure
that the step size is within the prescribed bounds (hmin < ho < Amax), Or to satisfy the
local error test condition.

F2003 Name FCVodeGetActualInitStep

’ CVodeGetCurrentTime

Call flag = CVodeGetCurrentTime(cvode mem, &tcur);

Description The function CVodeGetCurrentTime returns the current internal time reached by the
solver.

Arguments cvode mem (void *) pointer to the CVODES memory block.
tcur (realtype) current internal time reached.

76 Using CVODES for IVP Solution

Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

F2003 Name FCVodeGetCurrentTime

’ CVodeGetNumStabLimOrderReds
Call flag = CVodeGetNumStabLimOrderReds(cvode mem, &nslred);

Description The function CVodeGetNumStabLimOrderReds returns the number of order reductions
dictated by the BDF stability limit detection algorithm (see §2.3).

Arguments cvode mem (void *) pointer to the CVODES memory block.

nslred (long int) number of order reductions due to stability limit detection.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes If the stability limit detection algorithm was not initialized (CVodeSetStabLimDet was
not called), then nslred = 0.

F2003 Name FCVodeGetNumStabLimOrderReds

’CVodeGetTolScaleFactor
Call flag = CVodeGetTolScaleFactor(cvode mem, &tolsfac);

Description The function CVodeGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some internal
step.

Arguments cvode mem (void *) pointer to the CVODES memory block.

tolsfac (realtype) suggested scaling factor for user-supplied tolerances.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

F2003 Name FCVodeGetTolScaleFactor

CVodeGetErrWeights

Call flag = CVodeGetErrWeights(cvode mem, eweight);

Description The function CVodeGetErrWeights returns the solution error weights at the current
time. These are the reciprocals of the W; given by (2.8).

Arguments cvodemem (void *) pointer to the CVODES memory block.

eweight (N_Vector) solution error weights at the current time.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes The user must allocate memory for eweight.

F2003 Name FCVodeGetErrWeights

4.5 User-callable functions 77

’CVodeGetEstLocalErrors‘
Call flag = CVodeGetEstLocalErrors(cvode mem, ele);

Description The function CVodeGetEstLocalErrors returns the vector of estimated local errors.
Arguments cvode mem (void *) pointer to the CVODES memory block.
ele (N_Vector) estimated local errors.
Return value The return value flag (of type int) is one of
CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
Notes The user must allocate memory for ele.
The values returned in ele are valid only if CVode returned a non-negative value.

The ele vector, togther with the eweight vector from CVodeGetErrWeights, can be
used to determine how the various components of the system contributed to the es-
timated local error test. Specifically, that error test uses the RMS norm of a vector
whose components are the products of the components of these two vectors. Thus, for
example, if there were recent error test failures, the components causing the failures are
those with largest values for the products, denoted loosely as eweight [i]*ele[i].

F2003 Name FCVodeGetEstLocalErrors

CVodeGetIntegratorStats

Call flag = CVodeGetIntegratorStats(cvode mem, &nsteps, &nfevals,
&nlinsetups, &netfails, &qlast, &qcur,
&hinused, &hlast, &hcur, &tcur);

Description The function CVodeGetIntegratorStats returns the CVODES integrator statistics as a
group.

Arguments cvodemem (void *) pointer to the CVODES memory block.
nsteps (long int) number of steps taken by CVODES.
nfevals (long int) number of calls to the user’s £ function.
nlinsetups (long int) number of calls made to the linear solver setup function.
netfails (long int) number of error test failures.
qlast (in) method order used on the last internal step.
qcur (int) method order to be used on the next internal step.
hinused (realtype) actual value of initial step size.
hlast (realtype) step size taken on the last internal step.
hcur (realtype) step size to be attempted on the next internal step.
tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

CV_SUCCESS the optional output values have been successfully set.
CV_MEM _NULL the cvode_mem pointer is NULL.

F2003 Name FCVodeGetIntegratorStats

’ CVodeGetNumNonlinSolvIters

Call flag = CVodeGetNumNonlinSolvIters(cvode mem, &nniters);

Description The function CVodeGetNumNonlinSolvIters returns the number of nonlinear iterations
performed.

Arguments cvodemem (void *) pointer to the CVODES memory block.

78 Using CVODES for IVP Solution

nniters (long int) number of nonlinear iterations performed.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output values have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_MEM_FAIL The SUNNONLINSOL module is NULL.

F2003 Name FCVodeGetNumNonlinSolvIters

’CVodeGetNumNonlinSovaonvFails

Call flag = CVodeGetNumNonlinSolvConvFails(cvode mem, &nncfails);

Description The function CVodeGetNumNonlinSolvConvFails returns the number of nonlinear con-
vergence failures that have occurred.

Arguments cvodemem (void *) pointer to the CVODES memory block.

nncfails (long int) number of nonlinear convergence failures.
Return value The return value flag (of type int) is one of

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

F2003 Name FCVodeGetNumNonlinSolvConvFails

’ CVodeGetNonlinSolvStats

Call flag = CVodeGetNonlinSolvStats(cvode mem, &nniters, &nncfails);

Description The function CVodeGetNonlinSolvStats returns the CVODES nonlinear solver statistics
as a group.

Arguments cvode mem (void *) pointer to the CVODES memory block.
nniters (long int) number of nonlinear iterations performed.
nncfails (long int) number of nonlinear convergence failures.

Return value The return value flag (of type int) is one of
CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_MEM_FAIL The SUNNONLINSOL module is NULL.

F2003 Name FCVodeGetNonlinSolvStats

CVodeGetReturnFlagName

Call name = CVodeGetReturnFlagName (flag);

Description The function CVodeGetReturnFlagName returns the name of the CVODES constant cor-
responding to flag.

Arguments The only argument, of type int, is a return flag from a CvVODES function.
Return value The return value is a string containing the name of the corresponding constant.

F2003 Name FCVodeGetReturnFlagName

4.5.9.3 Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

4.5 User-callable functions 79

’CVodeGetRootInfo

Call flag = CVodeGetRootInfo(cvode mem, rootsfound);

Description The function CVodeGetRootInfo returns an array showing which functions were found
to have a root.
Arguments cvodemem (void *) pointer to the CVODES memory block.

rootsfound (int *) array of length nrtfn with the indices of the user functions g;
found to have a root. For i = 0,... nrtfn—1, rootsfound[i]#£ 0 if g; has a
root, and = 0 if not.

Return value The return value flag (of type int) is one of:

CV_SUCCESS The optional output values have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

Notes Note that, for the components g; for which a root was found, the sign of rootsfound]i|
indicates the direction of zero-crossing. A value of +1 indicates that g; is increasing,
while a value of —1 indicates a decreasing g;.

The user must allocate memory for the vector rootsfound.

F2003 Name FCVodeGetRootInfo

’CVodeGetNumGEvals‘

Call flag = CVodeGetNumGEvals(cvode mem, &ngevals);

Description The function CVodeGetNumGEvals returns the cumulative number of calls made to the
user-supplied root function g.

Arguments cvodemem (void *) pointer to the CVODES memory block.
ngevals (long int) number of calls made to the user’s function g thus far.

Return value The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

F2003 Name FCVodeGetNumGEvals

4.5.9.4 CVLS linear solver interface optional output functions

The following optional outputs are available from the cvLs modules: workspace requirements, number
of calls to the Jacobian routine, number of calls to the right-hand side routine for finite-difference
Jacobian or Jacobian-vector product approximation, number of linear iterations, number of linear
convergence failures, number of calls to the preconditioner setup and solve routines, number of calls
to the Jacobian-vector setup and product routines, and last return value from a linear solver function.
Note that, where the name of an output would otherwise conflict with the name of an optional output
from the main solver, a suffix LS (for Linear Solver) has been added (e.g. lenrwLS).

CVodeGetLinWorkSpace \

Call flag = CVodeGetLinWorkSpace(cvode mem, &lenrwLS, &leniwLS);

Description The function CVodeGetLinWorkSpace returns the sizes of the real and integer workspaces
used by the CVLS linear solver interface.

Arguments cvode mem (void *) pointer to the CVODES memory block.
lenrwLS (long int) the number of realtype values in the CVLS workspace.
leniwlS (long int) the number of integer values in the CvLS workspace.

Return value The return value flag (of type int) is one of

80 Using CVODES for IVP Solution
CVLS_SUCCESS The optional output values have been successfully set.

CVLS_MEM NULL The cvode mem pointer is NULL.
CVLS_LMEM NULL The cVLS linear solver has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-

cated within this interface and to memory allocated by the SUNLINSOL object attached
to it. The template Jacobian matrix allocated by the user outside of CVLS is not included
in this report.
The previous routines CVD1sGetWorkspace and CVSpilsGetWorkspace are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these
will be deprecated in future releases, so we recommend that users transition to the new
routine name soon.

F2003 Name FCVodeGetLinWorkSpace

’CVodeGetNumJacEvals‘

Call flag = CVodeGetNumJacEvals(cvode mem, &njevals);

Description The function CVodeGetNumJacEvals returns the number of calls made to the CVLS
Jacobian approximation function.

Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

Notes

F2003 Name

njevals (long int) the number of calls to the Jacobian function.

The return value flag (of type int) is one of

CVLS_SUCCESS The optional output value has been successfully set.

CVLS_MEM_NULL The cvode mem pointer is NULL.

CVLS_LMEM_NULL The cVLS linear solver has not been initialized.

The previous routine CVD1sGetNumJacEvals is now a wrapper for this routine, and may

still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

FCVodeGetNumJacEvals

| CVodeGetNumLinRhsEvals

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = CVodeGetNumLinRhsEvals(cvode mem, &nfevalsLS);

The function CVodeGetNumLinRhsEvals returns the number of calls made to the user-

supplied right-hand side function due to the finite difference Jacobian approximation or

finite difference Jacobian-vector product approximation.

cvode mem (void *) pointer to the CVODES memory block.

nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.

The return value flag (of type int) is one of

CVLS_SUCCESS The optional output value has been successfully set.

CVLS_MEM_NULL The cvode mem pointer is NULL.

CVLS_LMEM_NULL The cVLS linear solver has not been initialized.

The value nfevalsLS is incremented only if one of the default internal difference quotient
functions is used.

The previous routines CVDlsGetNumRhsEvals and CVSpilsGetNumRhsEvals are now
wrappers for this routine, and may still be used for backward-compatibility. However,
these will be deprecated in future releases, so we recommend that users transition to
the new routine name soon.

FCVodeGetNumLinRhsEvals

4.5 User-callable functions 81

’CVodeGetNumLinIters‘

Call
Description

Arguments

Return value

Notes

F2003 Name

flag = CVodeGetNumLinIters(cvode mem, &nliters);
The function CVodeGetNumLinIters returns the cumulative number of linear iterations.

cvode mem (void *) pointer to the CVODES memory block.

nliters (long int) the current number of linear iterations.
The return value flag (of type int) is one of

CVLS_SUCCESS The optional output value has been successfully set.

CVLS_MEM NULL The cvode mem pointer is NULL.

CVLS_LMEM_NULL The cVLS linear solver has not been initialized.

The previous routine CVSpilsGetNumLinIters is now a wrapper for this routine, and

may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

FCVodeGetNumLinIters

[CVodeGetNumLinConvFails |

Call

Description

Arguments

Return value

flag = CVodeGetNumLinConvFails(cvode mem, &nlcfails);

The function CVodeGetNumLinConvFails returns the cumulative number of linear con-
vergence failures.
cvode mem (void *) pointer to the CVODES memory block.

nlcfails (long int) the current number of linear convergence failures.
The return value flag (of type int) is one of

CVLS_SUCCESS The optional output value has been successfully set.
CVLS_MEM_NULL The cvode_mem pointer is NULL.
CVLS_LMEM NULL The cVLS linear solver has not been initialized.

Notes The previous routine CVSpilsGetNumConvFails is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FCVodeGetNumLinConvFails

| CVodeGetNumPrecEvals |

Call flag = CVodeGetNumPrecEvals(cvode mem, &npevals);

Description The function CVodeGetNumPrecEvals returns the number of preconditioner evaluations,
i.e., the number of calls made to psetup with jok = SUNFALSE.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes

F2003 Name

npevals (long int) the current number of calls to psetup.
The return value flag (of type int) is one of
CVLS_SUCCESS The optional output value has been successfully set.

CVLS_MEM_NULL The cvode_mem pointer is NULL.
CVLS_LMEM_NULL The cVLS linear solver has not been initialized.

The previous routine CVSpilsGetNumPrecEvals is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

FCVodeGetNumPrecEvals

82 Using CVODES for IVP Solution

’CVodeGetNumPrecSolves‘

Call flag = CVodeGetNumPrecSolves(cvode mem, &npsolves);

Description The function CVodeGetNumPrecSolves returns the cumulative number of calls made to
the preconditioner solve function, psolve.

Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

Notes

F2003 Name

npsolves (long int) the current number of calls to psolve.
The return value flag (of type int) is one of
CVLS_SUCCESS The optional output value has been successfully set.

CVLS_MEM_NULL The cvode_mem pointer is NULL.
CVLS_LMEM_NULL The cVLS linear solver has not been initialized.

The previous routine CVSpilsGetNumPrecSolves is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

FCVodeGetNumPrecSolves

CVodeGetNumJTSetupEvals

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = CVodeGetNumJTSetupEvals(cvode mem, &njtsetup);

The function CVodeGetNumJTSetupEvals returns the cumulative number of calls made
to the Jacobian-vector setup function jtsetup.

cvode mem (void *) pointer to the CVODES memory block.

njtsetup (long int) the current number of calls to jtsetup.

The return value flag (of type int) is one of

CVLS_SUCCESS The optional output value has been successfully set.

CVLS_MEM NULL The cvode mem pointer is NULL.
CVLS_LMEM_NULL The cVLS linear solver has not been initialized.

The previous routine CVSpilsGetNumJTSetupEvals is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

FCVodeGetNumJTSetupEvals

’ CVodeGetNumJtimesEvals ‘

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = CVodeGetNumJtimesEvals(cvode mem, &njvevals);

The function CVodeGetNumJtimesEvals returns the cumulative number of calls made
to the Jacobian-vector function jtimes.

cvode mem (void *) pointer to the CVODES memory block.

njvevals (long int) the current number of calls to jtimes.

The return value flag (of type int) is one of

CVLS_SUCCESS The optional output value has been successfully set.

CVLS_MEM_NULL The cvode_mem pointer is NULL.

CVLS_LMEM_NULL The cvLs linear solver has not been initialized.

The previous routine CVSpilsGetNumJtimesEvals is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

FCVodeGetNumJtimesEvals

4.5 User-callable functions 83

CVodeGetLastLinFlag‘

Call flag = CVodeGetLastLinFlag(cvode mem, &lsflag);

Description The function CVodeGetLastLinFlag returns the last return value from a CVLS routine.
Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes

F2003 Name

1lsflag (long int) the value of the last return flag from a cvLs function.
The return value flag (of type int) is one of

CVLS_SUCCESS The optional output value has been successfully set.
CVLS_MEM_NULL The cvode_mem pointer is NULL.
CVLS_LMEM_NULL The cvLs linear solver has not been initialized.

If the cvLs setup function failed (i.e., CVode returned CV_LSETUP_FAIL) when using the
SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then the value of 1sflag is equal to the
column index (numbered from one) at which a zero diagonal element was encountered
during the LU factorization of the (dense or banded) Jacobian matrix.

If the cvLs setup function failed when using another SUNLINSOL module, then 1sflag
will be SUNLS_PSET_FAIL _UNREC, SUNLS_ASET_FAIL UNREC, or
SUNLS_PACKAGE_FAIL_UNREC.

If the cvLs solve function failed (i.e., CVode returned CV_LSOLVE_FAIL), then 1lsflag
contains the error return flag from the SUNLINSOL object, which will be one of:
SUNLS_MEM_NULL, indicating that the SUNLINSOL memory is NULL;
SUNLS_ATIMES_FAIL_UNREC, indicating an unrecoverable failure in the Jv function;
SUNLS_PSOLVE_FAIL _UNREC, indicating that the preconditioner solve function psolve
failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt pro-
cedure (SPGMR and SPFGMR only); SUNLS_QRSOL_FAIL, indicating that the matrix R
was found to be singular during the QR solve phase (SPGMR and SPFGMR only); or
SUNLS_PACKAGE_FAIL _UNREC, indicating an unrecoverable failure in an external iterative
linear solver package.

The previous routines CVD1sGetLastFlag and CVSpilsGetLastFlag are now wrappers
for this routine, and may still be used for backward-compatibility. However, these will
be deprecated in future releases, so we recommend that users transition to the new
routine name soon.

FCVodeGetLastLinFlag

CVodeGetLinReturnFlagName

Call

Description

Arguments

Return value

Notes

F2003 Name

name = CVodeGetLinReturnFlagName(lsflag);

The function CVodeGetLinReturnFlagName returns the name of the CVLS constant cor-
responding to lsflag.

The only argument, of type long int, is a return flag from a cvLs function.
The return value is a string containing the name of the corresponding constant.
If 1 < 1sflag < N (LU factorization failed), this routine returns “NONE”.

The previous routines CVD1sGetReturnFlagName and CVSpilsGetReturnFlagName are
now wrappers for this routine, and may still be used for backward-compatibility. How-
ever, these will be deprecated in future releases, so we recommend that users transition
to the new routine name soon.

FCVodeGetLinReturnFlagName

84 Using CVODES for IVP Solution

4.5.9.5 Diagonal linear solver interface optional output functions

The following optional outputs are available from the CVDIAG module: workspace requirements, num-
ber of calls to the right-hand side routine for finite-difference Jacobian approximation, and last return
value from a CVDIAG function. Note that, where the name of an output would otherwise conflict with
the name of an optional output from the main solver, a suffix LS (for Linear Solver) has been added
here (e.g. lenrwlS).

’CVDiagGetWorkSpace‘

Call flag = CVDiagGetWorkSpace(cvode mem, &lenrwLS, &leniwLS);
Description The function CVDiagGetWorkSpace returns the CVDIAG real and integer workspace sizes.
Arguments cvodemem (void *) pointer to the CVODES memory block.
lenrwLS (long int) the number of realtype values in the CVDIAG workspace.
leniwLS (long int) the number of integer values in the CvDIAG workspace.
Return value The return value flag (of type int) is one of
CVDIAG_SUCCESS The optional output valus have been successfully set.
CVDIAG_MEM NULL The cvode mem pointer is NULL.
CVDIAG_LMEM NULL The CVDIAG linear solver has not been initialized.

Notes In terms of the problem size N, the actual size of the real workspace is roughly 3N
realtype words.

F2003 Name FCVDiagGetWorkSpace

CVDiagGetNumRhsEvals

Call flag = CVDiagGetNumRhsEvals(cvode mem, &nfevalsLS);
Description The function CVDiagGetNumRhsEvals returns the number of calls made to the user-

supplied right-hand side function due to the finite difference Jacobian approximation.
Arguments cvode mem (void *) pointer to the CVODES memory block.
nfevalsLS (long int) the number of calls made to the user-supplied right-hand side
function.
Return value The return value flag (of type int) is one of
CVDIAG_SUCCESS The optional output value has been successfully set.
CVDIAG_MEM_NULL The cvode_mem pointer is NULL.
CVDIAG_LMEM NULL The CVDIAG linear solver has not been initialized.

Notes The number of diagonal approximate Jacobians formed is equal to the number of calls
made to the linear solver setup function (see CVodeGetNumLinSolvSetups).

F2003 Name FCVDiagGetNumRhsEvals

CVDiagGetLastFlag‘

Call flag = CVDiagGetLastFlag(cvode mem, &lsflag);
Description The function CVDiagGetLastFlag returns the last return value from a CVDIAG routine.
Arguments cvode mem (void *) pointer to the CVODES memory block.
lsflag (long int) the value of the last return flag from a CcvDIAG function.
Return value The return value flag (of type int) is one of
CVDIAG_SUCCESS The optional output value has been successfully set.
CVDIAG_MEM_NULL The cvode_mem pointer is NULL.

4.5 User-callable functions 85

CVDIAG_LMEM_NULL The CVDIAG linear solver has not been initialized.

Notes If the cvDIAG setup function failed (CVode returned CV_LSETUP_FAIL), the value of
1sflag is equal to CVDIAG_INV_FAIL, indicating that a diagonal element with value zero
was encountered. The same value is also returned if the CVDIAG solve function failed
(CVode returned CV_LSOLVE_FAIL).

F2003 Name FCVDiagGetLastFlag

CVDiagGetReturnFlagName

Call name = CVDiagGetReturnFlagName(1lsflag);

Description The function CVDiagGetReturnFlagName returns the name of the CVDIAG constant
corresponding to 1sflag.

Arguments The only argument, of type long int, is a return flag from a CVDIAG function.
Return value The return value is a string containing the name of the corresponding constant.
F2003 Name FCVDiagGetReturnFlagName

4.5.10 CVODES reinitialization function

The function CVodeReInit reinitializes the main CVODES solver for the solution of a new problem,
where a prior call to CVodeInit been made. The new problem must have the same size as the
previous one. CVodeReInit performs the same input checking and initializations that CVodeInit
does, but does no memory allocation, as it assumes that the existing internal memory is sufficient
for the new problem. A call to CVodeReInit deletes the solution history that was stored internally
during the previous integration. Following a successful call to CVodeReInit, call CVode again for the
solution of the new problem.

The use of CVodeReInit requires that the maximum method order, denoted by maxord, be no
larger for the new problem than for the previous problem. This condition is automatically fulfilled
if the multistep method parameter lmm is unchanged (or changed from CV_ADAMS to CV_BDF) and the
default value for maxord is specified.

If there are changes to the linear solver specifications, make the appropriate calls to either the
linear solver objects themselves, or to the CVLS interface routines, as described in §4.5.3. Otherwise,
all solver inputs set previously remain in effect.

One important use of the CVodeReInit function is in the treating of jump discontinuities in the
RHS function. Except in cases of fairly small jumps, it is usually more efficient to stop at each point
of discontinuity and restart the integrator with a readjusted ODE model, using a call to CVodeReInit.
To stop when the location of the discontinuity is known, simply make that location a value of tout. To
stop when the location of the discontinuity is determined by the solution, use the rootfinding feature.
In either case, it is critical that the RHS function not incorporate the discontinuity, but rather have
a smooth extention over the discontinuity, so that the step across it (and subsequent rootfinding, if
used) can be done efficiently. Then use a switch within the RHS function (communicated through
user_data) that can be flipped between the stopping of the integration and the restart, so that the
restarted problem uses the new values (which have jumped). Similar comments apply if there is to be
a jump in the dependent variable vector.

CVodeRelInit

Call flag = CVodeReInit(cvode mem, t0, yO0);

Description The function CVodeReInit provides required problem specifications and reinitializes
CVODES.

Arguments cvodemem (void *) pointer to the CVODES memory block.
t0 (realtype) is the initial value of t.
yO (N_Vector) is the initial value of y.

86 Using CVODES for IVP Solution

Return value The return value flag (of type int) will be one of the following;:

CV_SUCCESS The call to CVodeReInit was successful.

CV_MEM_NULL The CcVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_MALLOC Memory space for the CVODES memory block was not allocated through
a previous call to CVodeInit.

CV_ILL_INPUT An input argument to CVodeReInit has an illegal value.

Notes If an error occurred, CVodeReInit also sends an error message to the error handler
function.

F2003 Name FCVodeReInit

4.6 User-supplied functions

The user-supplied functions consist of one function defining the ODE, (optionally) a function that
handles error and warning messages, (optionally) a function that provides the error weight vector,
(optionally) one or two functions that provide Jacobian-related information for the linear solver, and
(optionally) one or two functions that define the preconditioner for use in any of the Krylov iterative
algorithms.

4.6.1 ODE right-hand side

The user must provide a function of type CVRhsFn defined as follows:

Definition typedef int (*CVRhsFn) (realtype t, N_Vector y, N_Vector ydot,
void *user_data);

Purpose This function computes the ODE right-hand side for a given value of the independent
variable ¢ and state vector y.

Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector, y(t).
ydot is the output vector f(t,y).

user_data is the user_data pointer passed to CVodeSetUserData.

Return value A CVRhsFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case CVODES will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CV_RHSFUNC_FAIL is returned).

Notes Allocation of memory for ydot is handled within CVODES.

A recoverable failure error return from the CVRhsFn is typically used to flag a value
of the dependent variable y that is “illegal” in some way (e.g., negative where only a
non-negative value is physically meaningful). If such a return is made, CVODES will
attempt to recover (possibly repeating the nonlinear solve, or reducing the step size) in
order to avoid this recoverable error return.

For efficiency reasons, the right-hand side function is not evaluated at the converged
solution of the nonlinear solver. Therefore, in general, a recoverable error in that con-
verged value cannot be corrected. (It may be detected when the right-hand side function
is called the first time during the following integration step, but a successful step can-
not be undone.) However, if the user program also includes quadrature integration, the
state variables can be checked for legality in the call to CVQuadRhsFn, which is called
at the converged solution of the nonlinear system, and therefore CVODES can be flagged
to attempt to recover from such a situation. Also, if sensitivity analysis is performed

4.6 User-supplied functions 87

with one of the staggered methods, the ODE right-hand side function is called at the
converged solution of the nonlinear system, and a recoverable error at that point can
be flagged, and ¢CvVODES will then try to correct it.

There are two other situations in which recovery is not possible even if the right-hand
side function returns a recoverable error flag. One is when this occurs at the very
first call to the CVRhsFn (in which case CVODES returns CV_FIRST_RHSFUNC_ERR). The
other is when a recoverable error is reported by CVRhsFn after an error test failure,
while the linear multistep method order is equal to 1 (in which case CVODES returns
CV_UNREC_RHSFUNC_ERR).

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed
to by errfp (see CVodeSetErrFile), the user may provide a function of type CVErrHandlerFn to
process any such messages. The function type CVErrHandlerFn is defined as follows:

CVErrHandlerFn |

Definition typedef void (*CVErrHandlerFn) (int error_code, const char *module,
const char *function, char *msg,
void *eh_data);

Purpose This function processes error and warning messages from CVODES and its sub-modules.

Arguments error_code is the error code.
module is the name of the CvVODES module reporting the error.

function is the name of the function in which the error occurred.

msg is the error message.
eh_data is a pointer to user data, the same as the eh_data parameter passed to
CVodeSetErrHandlerFn.

Return value A CVErrHandlerFn function has no return value.

Notes error_code is negative for errors and positive (CV_WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error_code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function
of type CVEwtFn to compute a vector ewt containing the weights in the WRMS norm || v||wrms =

\/(1/1\7) Z?(WZ -v;)2. These weights will be used in place of those defined by Eq. (2.8). The function
type CVEwtFn is defined as follows:

Definition typedef int (*CVEwtFn) (N_Vector y, N_Vector ewt, void *user_data);

Purpose This function computes the WRMS error weights for the vector y.
Arguments y is the value of the dependent variable vector at which the weight vector is
to be computed.
ewt is the output vector containing the error weights.
user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

Return value A CVEwtFn function type must return 0 if it successfully set the error weights and —1
otherwise.

88 Using CVODES for IVP Solution

Notes Allocation of memory for ewt is handled within CVODES.

The error weight vector must have all components positive. It is the user’s responsiblity
to perform this test and return —1 if it is not satisfied.

4.6.4 Rootfinding function

If a rootfinding problem is to be solved during the integration of the ODE system, the user must
supply a C function of type CVRootFn, defined as follows:

Definition typedef int (*CVRootFn) (realtype t, N_Vector y, realtype *gout,
void *user_data);

Purpose This function implements a vector-valued function g(¢,y) such that the roots of the
nrtfn components g;(t,y) are sought.

Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector, y(t).
gout is the output array, of length nrtfn, with components g;(t,y).

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

Return value A CVRootFn should return 0 if successful or a non-zero value if an error occurred (in
which case the integration is halted and CVode returns CV_RTFUNC_FAIL).

Notes Allocation of memory for gout is automatically handled within CVODES.

4.6.5 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e., a non-NULL SUNMATRIX object was supplied to
CVodeSetLinearSolver), the user may optionally provide a function of type CVLsJacFn for evaluating
the Jacobian of the ODE right-hand side function (or an approximation of it). CVLsJacFn is defined
as follows:

CVLsJacFn

Definition ~ typedef int (*CVLsJacFn) (realtype t, N_Vector y, N Vector fy,
SUNMatrix Jac, void *user_data,
N_Vector tmpl, N Vector tmp2, N Vector tmp3);

Purpose This function computes the Jacobian matrix J = df/dy (or an approximation to it).
Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector, namely the predicted
value of y(t).
fy is the current value of the vector f(¢,y).
Jac is the output Jacobian matrix (of type SUNMatrix).
user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.
tmpl
tmp2
tmp3 are pointers to memory allocated for variables of type N_Vector which can

be used by a CVLsJacFn function as temporary storage or work space.

Return value A CVLsJacFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case CVODES will attempt to correct, while CVLS sets last_flag to
CVLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case

4.6 User-supplied functions 89

Notes

the integration is halted, CVodes returns CV_LSETUP_FAIL and CVLS sets last_flag
to CVLS_JACFUNC_UNRECVR).

Information regarding the structure of the specific SUNMATRIX structure (e.g. number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific SUNMATRIX interface functions (see Chapter 10 for details).

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER_DIRECT), the
Jacobian matrix J(¢,y) is zeroed out prior to calling the user-supplied Jacobian function
so only nonzero elements need to be loaded into Jac.

With the default nonlinear solver (the native SUNDIALS Netwon method), each call to
the preconditioner setup function is preceded by a call to the CVRhsFn user function
with the same (t,y) arguments. Thus, the preconditioner setup function can use any
auxiliary data that is computed and saved during the evaluation of the ODE right-hand
side. In the case of a user-supplied or external nonlinear solver, this is also true if the
nonlinear system function is evaluated prior to calling the linear solver setup function
(see §12.1.4 for more information).

If the user’s CVLsJacFn function uses difference quotient approximations, then it may
need to access quantities not in the argument list. These include the current step size,
the error weights, etc. To obtain these, the user will need to add a pointer to cv_mem
to user_data and then use the CVodeGet* functions described in §4.5.9.2. The unit
roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

dense:

A user-supplied dense Jacobian function must load the N by N dense matrix Jac with
an approximation to the Jacobian matrix J(t,y) at the point (t, y). The accessor
macros SM_ELEMENT_ D and SM_COLUMN_D allow the user to read and write dense matrix
elements without making explicit references to the underlying representation of the SUN-
MATRIX_DENSE type. SM_ELEMENT.D(J, i, j) references the (i, j)-th element of the
dense matrix Jac (with i, j = 0...N —1). This macro is meant for small problems
for which efficiency of access is not a major concern. Thus, in terms of the indices
m and n ranging from 1 to IV, the Jacobian element J,, , can be set using the state-
ment SM_ELEMENT D(J, m-1, n-1) = J, ,. Alternatively, SM_COLUMN.D(J, j) returns
a pointer to the first element of the j-th column of Jac (with j =0...N—1), and the
elements of the j-th column can then be accessed using ordinary array indexing. Con-
sequently, Jp,, can be loaded using the statements col.n = SM_COLUMN.D(J, n-1);
coln[m-1] = J,, ,. For large problems, it is more efficient to use SM_COLUMN_D than to
use SM_ELEMENT_D. Note that both of these macros number rows and columns starting
from 0. The SUNMATRIX_DENSE type and accessor macros are documented in §10.3.

banded:

A user-supplied banded Jacobian function must load the N by N banded matrix Jac
with the elements of the Jacobian J(t,y) at the point (t,y). The accessor macros
SM_ELEMENT_B, SM_COLUMN_B, and SM_COLUMN_ELEMENT_B allow the user to read and write
band matrix elements without making specific references to the underlying representa-
tion of the SUNMATRIX_BAND type. SM_ELEMENT B(J, i, j) references the (i, j)-th
element of the band matrix Jac, counting from 0. This macro is meant for use in small
problems for which efficiency of access is not a major concern. Thus, in terms of the
indices m and n ranging from 1 to N with (m, n) within the band defined by mupper and
mlower, the Jacobian element J,, ,, can be loaded using the statement SM_ELEMENT B(J,
m-1, n-1) = J, ,. The elements within the band are those with -mupper < m-n <
mlower. Alternatively, SM_COLUMN_B(J, j) returns a pointer to the diagonal element
of the j-th column of Jac, and if we assign this address to realtype *col_j, then
the i-th element of the j-th column is given by SM_COLUMN_ELEMENT B(col_j, i, j),
counting from 0. Thus, for (m,n) within the band, J,, , can be loaded by setting coln
= SM_COLUMN_B(J, n-1); SM_COLUMN_ELEMENT B(coln, m-1, n-1) = J,, ,. The ele-

90

Using CVODES for IVP Solution

ments of the j-th column can also be accessed via ordinary array indexing, but this
approach requires knowledge of the underlying storage for a band matrix of type SUN-
MATRIX_BAND. The array coln can be indexed from —mupper to mlower. For large
problems, it is more efficient to use SM_COLUMN B and SM_COLUMN_ELEMENT B than to
use the SM_ELEMENT B macro. As in the dense case, these macros all number rows and
columns starting from 0. The SUNMATRIX_BAND type and accessor macros are docu-
mented in §10.4.

sparse:
A user-supplied sparse Jacobian function must load the N by N compressed-sparse-
column or compressed-sparse-row matrix Jac with an approximation to the Jacobian
matrix J(¢,y) at the point (t, y). Storage for Jac already exists on entry to this func-
tion, although the user should ensure that sufficient space is allocated in Jac to hold the
nonzero values to be set; if the existing space is insufficient the user may reallocate the
data and index arrays as needed. The amount of allocated space in a SUNMATRIX_SPARSE
object may be accessed using the macro SM_NNZ_S or the routine SUNSparseMatrix NNZ.
The SUNMATRIX_SPARSE type and accessor macros are documented in §10.5.

The previous function type CVD1sJacFn is identical to CVLsJacFn, and may still be used
for backward-compatibility. However, this will be deprecated in future releases, so we
recommend that users transition to the new function type name soon.

4.6.6 Linear system construction (matrix-based linear solvers)

With matrix-based linear solver modules, as an alternative to optionally supplying a function for
evaluating the Jacobian of the ODE right-hand side function, the user may optionally supply a function
of type CVLsLinSysFn for evaluating the linear system, M = I — «J (or an approximation of it).
CVLsLinSysFn is defined as follows:

CVLsLinSysFn

Definition

Purpose

Arguments

typedef int (*CVLsLinSysFn) (realtype t, N_Vector y, N_Vector fy,
SUNMatrix M, booleantype jok,
booleantype *jcur, realtype gamma,
void *user_data, N_Vector tmpl,
N_Vector tmp2, N_Vector tmp3);

This function computes the linear system matrix M = I —~J (or an approximation to
it).

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(¢,y).

M is the output linear system matrix (of type SUNMatrix).

jok is an input flag indicating whether the Jacobian-related data needs to be

updated. The jok flag enables reusing of Jacobian data across linear solves
however, the user is responsible for storing Jacobian data for reuse. jok =
SUNFALSE means that the Jacobian-related data must be recomputed from
scratch. jok = SUNTRUE means that the Jacobian data, if saved from the
previous call to this function, can be reused (with the current value of
gamma). A call with jok = SUNTRUE can only occur after a call with jok =
SUNFALSE.

jcur is a pointer to a flag which should be set to SUNTRUE if Jacobian data was

recomputed, or set to SUNFALSE if Jacobian data was not recomputed, but
saved data was still reused.

4.6 User-supplied functions 91

Return value

gamma is the scalar v appearing in the matrix M = I —~J.

user_data is a pointer to user data, the same as the user_data parameter passed to
the function CVodeSetUserData.

tmpl

tmp2

tmp3 are pointers to memory allocated for variables of type N_Vector which can
be used by a CVLsLinSysFn function as temporary storage or work space.

A CVLsLinSysFn should return 0 if successful, a positive value if a recoverable error
occurred (in which case CVODES will attempt to correct, while CVLS sets last_flag
to CVLS_JACFUNC_RECVR), or a negative value if it failed unrecoverably (in which case
the integration is halted, CVode returns CV_LSETUP_FAIL and CVLS sets last_flag to
CVLS_JACFUNC_UNRECVR).

4.6.7 Jacobian-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used (i.e., a NULL-valued SUNMATRIX was supplied to
CVodeSetLinearSolver), the user may provide a function of type CVLsJacTimesVecFn in the following
form, to compute matrix-vector products Jv. If such a function is not supplied, the default is a
difference quotient approximation to these products.

’ CVLsJacTimesVecFn ‘

Definition

Purpose

Arguments

Return value

Notes

typedef int (*CVLsJacTimesVecFn) (N_Vector v, N_Vector Jv,
realtype t, N_Vector y, N_Vector fy,
void *user_data, N_Vector tmp);

This function computes the product Jv = (9f/0y)v (or an approximation to it).

v is the vector by which the Jacobian must be multiplied.

Jv is the output vector computed.

t is the current value of the independent variable.

y is the current value of the dependent variable vector.

fy is the current value of the vector f(¢,y).

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

tmp is a pointer to memory allocated for a variable of type N_Vector which can

be used for work space.

The value returned by the Jacobian-vector product function should be 0 if successful.
Any other return value will result in an unrecoverable error of the generic Krylov solver,
in which case the integration is halted.

This function must return a value of J % v that uses the current value of J, i.e. as
evaluated at the current (¢,y).

If the user’s CVLsJacTimesVecFn function uses difference quotient approximations, it
may need to access quantities not in the argument list. These include the current step
size, the error weights, etc. To obtain these, the user will need to add a pointer to
cv_mem to user_data and then use the CVodeGet* functions described in §4.5.9.2. The
unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

The previous function type CVSpilsJacTimesVecFn is identical to CVLsJacTimesVecFn,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

92 Using CVODES for IVP Solution

4.6.8 Jacobian-vector product setup (matrix-free linear solvers)

If the user’s Jacobian-times-vector routine requires that any Jacobian-related data be preprocessed
or evaluated, then this needs to be done in a user-supplied function of type CVLsJacTimesSetupFn,
defined as follows:

CVLsJacTimesSetupFn

Definition typedef int (*CVLsJacTimesSetupFn) (realtype t, N_Vector vy,
N_Vector fy, void *user_data);

Purpose This function preprocesses and/or evaluates Jacobian-related data needed by the Jacobian-
times-vector routine.

Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector.
fy is the current value of the vector f(¢,y).

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

Return value The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Notes Each call to the Jacobian-vector setup function is preceded by a call to the CVRhsFn
user function with the same (t,y) arguments. Thus, the setup function can use any
auxiliary data that is computed and saved during the evaluation of the ODE right-hand
side.

If the user’s CVLsJacTimesSetupFn function uses difference quotient approximations,
it may need to access quantities not in the argument list. These include the current
step size, the error weights, etc. To obtain these, the user will need to add a pointer to
cv_mem to user_data and then use the CVodeGet* functions described in §4.5.9.2. The
unit roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

The previous function type CVSpilsJacTimesSetupFn is identical to
CVLsJacTimesSetupFn, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.

4.6.9 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLINSOL solver module, then the user must
provide a function to solve the linear system Pz = r, where P may be either a left or right pre-
conditioner matrix. Here P should approximate (at least crudely) the matrix M = I — ~J, where
J = 0f/0y. If preconditioning is done on both sides, the product of the two preconditioner matrices
should approximate M. This function must be of type CVLsPrecSolveFn, defined as follows:

’CVLsPrecSolvan‘

Definition =~ typedef int (*CVLsPrecSolveFn) (realtype t, N_Vector y, N_Vector fy,
N_Vector r, N_Vector z, realtype gamma,
realtype delta, int lr, void *user_data);

Purpose This function solves the preconditioned system Pz = r.
Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector.
fy is the current value of the vector f(¢,y).

r is the right-hand side vector of the linear system.

4.6 User-supplied functions 93

Return value

Notes

z is the computed output vector.

gamma is the scalar v appearing in the matrix given by M =1 — ~J.

delta is an input tolerance to be used if an iterative method is employed in the
solution. In that case, the residual vector Res = r— Pz of the system should
be made less than delta in the weighted Iy norm, i.e., \/Zi(Resi cewt;)? <
delta. To obtain the N_Vector ewt, call CVodeGetErrWeights (see §4.5.9.2).

1r is an input flag indicating whether the preconditioner solve function is to
use the left preconditioner (1r = 1) or the right preconditioner (1r = 2);

user_data is a pointer to user data, the same as the user_data parameter passed to
the function CVodeSetUserData.

The value returned by the preconditioner solve function is a flag indicating whether it
was successful. This value should be 0 if successful, positive for a recoverable error (in
which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

The previous function type CVSpilsPrecSolveFn is identical to CVLsPrecSolveFn, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new function type name soon.

4.6.10 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be preprocessed or evaluated, then
this needs to be done in a user-supplied function of type CVLsPrecSetupFn, defined as follows:

CVLsPrecSetupFn

Definition

Purpose

Arguments

Return value

typedef int (*CVLsPrecSetupFn) (realtype t, N_Vector y, N_Vector fy,
booleantype jok, booleantype *jcurPtr,
realtype gamma, void *user_data);

This function preprocesses and/or evaluates Jacobian-related data needed by the pre-
conditioner.

t is the current value of the independent variable.

y is the current value of the dependent variable vector, namely the predicted
value of y(t).

fy is the current value of the vector f(¢,y).

jok is an input flag indicating whether the Jacobian-related data needs to be

updated. The jok argument provides for the reuse of Jacobian data in the
preconditioner solve function. jok = SUNFALSE means that the Jacobian-
related data must be recomputed from scratch. jok = SUNTRUE means that
the Jacobian data, if saved from the previous call to this function, can be
reused (with the current value of gamma). A call with jok = SUNTRUE can
only occur after a call with jok = SUNFALSE.

jcurPtr is a pointer to a flag which should be set to SUNTRUE if Jacobian data was
recomputed, or set to SUNFALSE if Jacobian data was not recomputed, but
saved data was still reused.

gamma is the scalar v appearing in the matrix M = I —~vJ.

user_data is a pointer to user data, the same as the user_data parameter passed to
the function CVodeSetUserData.

The value returned by the preconditioner setup function is a flag indicating whether it
was successful. This value should be 0 if successful, positive for a recoverable error (in
which case the step will be retried), or negative for an unrecoverable error (in which
case the integration is halted).

94

Using CVODES for IVP Solution

Notes

The operations performed by this function might include forming a crude approximate
Jacobian and performing an LU factorization of the resulting approximation to M =
I—~dJ.

With the default nonlinear solver (the native SUNDIALS Netwon method), each call to
the preconditioner setup function is preceded by a call to the CVRhsFn user function
with the same (t,y) arguments. Thus, the preconditioner setup function can use any
auxiliary data that is computed and saved during the evaluation of the ODE right-hand
side. In the case of a user-supplied or external nonlinear solver, this is also true if the
nonlinear system function is evaluated prior to calling the linear solver setup function
(see §12.1.4 for more information).

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the nonlinear
solver.

If the user’s CVLsPrecSetupFn function uses difference quotient approximations, it may
need to access quantities not in the call list. These include the current step size, the
error weights, etc. To obtain these, the user will need to add a pointer to cv_mem
to user_data and then use the CVodeGet* functions described in §4.5.9.2. The unit
roundoff can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

The previous function type CVSpilsPrecSetupFn is identical to CVLsPrecSetupFn, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new function type name soon.

4.7 Integration of pure quadrature equations

CcVODES allows the ODE system to include pure quadratures. In this case, it is more efficient to treat
the quadratures separately by excluding them from the nonlinear solution stage. To do this, begin by
excluding the quadrature variables from the vector y and excluding the quadrature equations from
within res. Thus a separate vector yQ of quadrature variables is to satisfy (d/dt)yQ = fo(t,y). The
following is an overview of the sequence of calls in a user’s main program in this situation. Steps that
are unchanged from the skeleton program presented in §4.4 are grayed out.

1. Initialize parallel or multi-threaded environment, if appropriate

2. Set problem dimensions, etc.

Set the problem size N (excluding quadrature variables), and the number of quadrature variables

Nq.

If appropriate, set the local vector length Nlocal (excluding quadrature variables), and the local
number of quadrature variables Nqlocal.

3. Set vector of initial values

4. Create CVODES object

5. Initialize CVODES solver

6. Specify integration tolerances

7. Create matrix object

8. Create linear solver object

9. Set linear solver optional inputs

10. Attach linear solver module

4.7 Integration of pure quadrature equations 95

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25

Set optional inputs
Attach nonlinear solver module
Set nonlinear solver optional inputs

Set vector yQO of initial values for quadrature variables

Typically, the quadrature variables should be initialized to O.

Initialize quadrature integration

Call CVodeQuadInit to specify the quadrature equation right-hand side function and to allocate
internal memory related to quadrature integration. See §4.7.1 for details.

Set optional inputs for quadrature integration

Call CVodeSetQuadErrCon to indicate whether or not quadrature variables shoule be used in the
step size control mechanism, and to specify the integration tolerances for quadrature variables.
See §4.7.4 for details.

Advance solution in time

Extract quadrature variables

Call CVodeGetQuad to obtain the values of the quadrature variables at the current time. See §4.7.3
for details.

Get optional outputs

Get quadrature optional outputs

Call CVodeGetQuad* functions to obtain optional output related to the integration of quadratures.
See §4.7.5 for details.

Deallocate memory for solution vector and for the vector of quadrature variables
Free solver memory

Free nonlinear solver memory

Free linear solver and matrix memory

Finalize MPI, if used

CVodeQuadInit can be called and quadrature-related optional inputs (step 16 above) can be set
anywhere between steps 4 and 17.

4.7.1 Quadrature initialization and deallocation functions

The function CVodeQuadInit activates integration of quadrature equations and allocates internal
memory related to these calculations. The form of the call to this function is as follows:

CVodeQuadInit

Call flag = CVodeQuadInit(cvode mem, £Q, yQO);

Description The function CVodeQuadInit provides required problem specifications, allocates internal

memory, and initializes quadrature integration.

Arguments cvodemem (void *) pointer to the CVODES memory block returned by CVodeCreate.

96 Using CVODES for IVP Solution

£Q (CVQuadRhsFn) is the C function which computes fq, the right-hand side
of the quadrature equations. This function has the form £Q(t, y, yQdot,
fQ_data) (for full details see §4.7.6).
yQo (N_Vector) is the initial value of yQ (typically yQO has all zero components).
Return value The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeQuadInit was successful.
CV_MEM_NULL The CVODES memory was not initialized by a prior call to CVodeCreate.
CV_MEM_FAIL A memory allocation request failed.

Notes If an error occurred, CVodeQuadInit also sends an error message to the error handler
function.

F2003 Name FCVodeQuadInit

In terms of the number of quadrature variables N, and maximum method order maxord, the size of
the real workspace is increased as follows:

e Base value: lenrw = lenrw + (maxord+5)N,

e If using CVodeSVtolerances (see CVodeSetQuadErrCon): lenrw = lenrw +N,
the size of the integer workspace is increased as follows:

e Base value: leniw = leniw + (maxord+5)N,

o If using CVodeSVtolerances: leniw = leniw +N,

The function CVodeQuadReInit, useful during the solution of a sequence of problems of same size,
reinitializes the quadrature-related internal memory and must follow a call to CVodeQuadInit (and
maybe a call to CVodeReInit). The number Nq of quadratures is assumed to be unchanged from the
prior call to CVodeQuadInit. The call to the CVodeQuadReInit function has the following form:

’CVodeQuadReInit‘

Call flag = CVodeQuadReInit(cvode mem, yQO);

Description The function CVodeQuadReInit provides required problem specifications and reinitial-
izes the quadrature integration.

Arguments cvode mem (void *) pointer to the CVODES memory block.
yQo (N_Vector) is the initial value of yQ.

Return value The return value flag (of type int) will be one of the following;:
CV_SUCCESS The call to CVodeReInit was successful.
CV_MEM_NULL The CVODES memory was not initialized by a prior call to CVodeCreate.
CV_NO_QUAD Memory space for the quadrature integration was not allocated by a prior

call to CVodeQuadInit.

Notes If an error occurred, CVodeQuadReInit also sends an error message to the error handler

function.

F2003 Name FCVodeQuadReInit

CVodeQuadFree

Call CVodeQuadFree (cvode_mem) ;

Description The function CVodeQuadFree frees the memory allocated for quadrature integration.
Arguments The argument is the pointer to the CVODES memory block (of type void *).
Return value The function CVodeQuadFree has no return value.

Notes In general, CVodeQuadFree need not be called by the user as it is invoked automatically
by CVodeFree.

F2003 Name FCVodeQuadFree

4.7 Integration of pure quadrature equations 97

4.7.2 CVODES solver function

Even if quadrature integration was enabled, the call to the main solver function CVode is exactly the
same as in §4.5.6. However, in this case the return value flag can also be one of the following:
CV_QRHSFUNC_FAIL The quadrature right-hand side function failed in an unrecoverable manner.

CV_FIRST_QRHSFUNC_FAIL The quadrature right-hand side function failed at the first call.

CV_REPTD_QRHSFUNC_ERR Convergence test failures occurred too many times due to repeated recov-
erable errors in the quadrature right-hand side function. This value will
also be returned if the quadrature right-hand side function had repeated
recoverable errors during the estimation of an initial step size (assuming
the quadrature variables are included in the error tests).

CV_UNREC_RHSFUNC_ERR The quadrature right-hand function had a recoverable error, but no recov-
ery was possible. This failure mode is rare, as it can occur only if the
quadrature right-hand side function fails recoverably after an error test
failed while at order one.

4.7.3 Quadrature extraction functions

If quadrature integration has been initialized by a call to CVodeQuadInit, or reinitialized by a call
to CVodeQuadReInit, then CVODES computes both a solution and quadratures at time t. However,
CVode will still return only the solution y in yout. Solution quadratures can be obtained using the
following function:

CVodeGetQuad

Call flag = CVodeGetQuad(cvode mem, &tret, yQ);

Description The function CVodeGetQuad returns the quadrature solution vector after a successful
return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

tret (realtype) the time reached by the solver (output).
yQ (N_Vector) the computed quadrature vector. This vector must be allocated
by the user.

Return value The return value flag of CVodeGetQuad is one of:

CV_SUCCESS CVodeGetQuad was successful.

CV_MEM_NULL cvode_mem was NULL.

CV_NO_QUAD Quadrature integration was not initialized.

CV_BAD_DKY yQ is NULL.
Notes In case of an error return, an error message is also sent to the error handler function.
F2003 Name FCVodeGetQuad

The function CVodeGetQuadDky computes the k-th derivatives of the interpolating polynomials for the
quadrature variables at time t. This function is called by CVodeGetQuad with k = 0 and with the
current time at which CVode has returned, but may also be called directly by the user.

CVodeGetQuadDky

Call flag = CVodeGetQuadDky(cvode mem, t, k, dkyQ);

Description The function CVodeGetQuadDky returns derivatives of the quadrature solution vector
after a successful return from CVode.

Arguments cvodemem (void *) pointer to the memory previously allocated by CVodeInit.

98

Using CVODES for IVP Solution

Return value

Notes
F2003 Name

t (realtype) the time at which quadrature information is requested. The
time t must fall within the interval defined by the last successful step taken
by CVODES.

k (int) order of the requested derivative. This must be < qlast.

dkyQ (N_Vector) the vector containing the derivative. This vector must be allo-

cated by the user.
The return value flag of CVodeGetQuadDky is one of:
CV_SUCCESS CVodeGetQuadDky succeeded.
CV_MEM_NULL The pointer to cvode mem was NULL.
CV_NO_QUAD Quadrature integration was not initialized.
CV_BAD_DKY The vector dkyQ is NULL.
CV_BAD K k is not in the range 0,1,..., qlast.
CV_BAD_T The time t is not in the allowed range.
In case of an error return, an error message is also sent to the error handler function.

FCVodeGetQuadDky

4.7.4 Optional inputs for quadrature integration

CVODES provides the following optional input functions to control the integration of quadrature equa-

tions.
CVodeSetQuadErrCon

Call flag = CVodeSetQuadErrCon(cvode mem, errconQ);

Description The function CVodeSetQuadErrCon specifies whether or not the quadrature variables are
to be used in the step size control mechanism within cvoDES. If they are, the user must
call CVodeQuadSStolerances or CVodeQuadSVtolerances to specify the integration
tolerances for the quadrature variables.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes

F2003 Name

errcon (booleantype) specifies whether quadrature variables are included (SUNTRUE)
or not (SUNFALSE) in the error control mechanism.

The return value flag (of type int) is one of:

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_NO_QUAD Quadrature integration has not been initialized.

By default, errconQ is set to SUNFALSE.
It is illegal to call CVodeSetQuadErrCon before a call to CVodeQuadInit.
FCVodeSetQuadErrCon

If the quadrature variables are part of the step size control mechanism, one of the following
functions must be called to specify the integration tolerances for quadrature variables.

CVodeQuadSStolerances‘

Call
Description

Arguments

flag = CVodeQuadSVtolerances(cvode mem, reltolQ, abstolQ);
The function CVodeQuadSStolerances specifies scalar relative and absolute tolerances.

cvode mem (void *) pointer to the CVODES memory block.
reltolQ (realtype) is the scalar relative error tolerance.
abstolQ (realtype) is the scalar absolute error tolerance.

4.7 Integration of pure quadrature equations 99

Return value The return value flag (of type int) is one of:
CV_SUCCESS The optional value has been successfully set.
CV_NO_QUAD Quadrature integration was not initialized.
CV_MEM NULL The cvode mem pointer is NULL.
CV_ILL_INPUT One of the input tolerances was negative.
F2003 Name FCVodeQuadSStolerances

‘CVodeQuadSVtolerances‘

Call flag = CVodeQuadSVtolerances(cvode mem, reltolQ, abstolQ);

Description The function CVodeQuadSVtolerances specifies scalar relative and vector absolute tol-
erances.

Arguments cvode mem (void *) pointer to the CVODES memory block.
reltolQ (realtype) is the scalar relative error tolerance.
abstolQ (N_Vector) is the vector absolute error tolerance.

Return value The return value flag (of type int) is one of:

CV_SUCCESS The optional value has been successfully set.

CV_NO_QUAD Quadrature integration was not initialized.

CV_MEM NULL The cvode mem pointer is NULL.

CV_ILL_INPUT One of the input tolerances was negative.
F2003 Name FCVodeQuadSVtolerances

4.7.5 Optional outputs for quadrature integration

CVODES provides the following functions that can be used to obtain solver performance information
related to quadrature integration.

CVodeGetQuadNumRhsEvals \

Call flag = CVodeGetQuadNumRhsEvals(cvode mem, &nfQevals);

Description The function CVodeGetQuadNumRhsEvals returns the number of calls made to the user’s
quadrature right-hand side function.

Arguments cvode mem (void *) pointer to the CVODES memory block.
nfQevals (long int) number of calls made to the user’s £Q function.
Return value The return value flag (of type int) is one of:
CV_SUCCESS The optional output value has been successfully set.
CV_MEM NULL The cvode_mem pointer is NULL.
CV_NO_QUAD Quadrature integration has not been initialized.

F2003 Name FCVodeGetQuadNumRhsEvals

CVodeGetQuadNumErrTestFails ‘

Call flag = CVodeGetQuadNumErrTestFails(cvode mem, &nQetfails);

Description The function CVodeGetQuadNumErrTestFails returns the number of local error test
failures due to quadrature variables.

Arguments cvode mem (void *) pointer to the CVODES memory block.
nQetfails (long int) number of error test failures due to quadrature variables.

Return value The return value flag (of type int) is one of:

100 Using CVODES for IVP Solution

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_NO_QUAD Quadrature integration has not been initialized.

F2003 Name FCVodeGetQuadNumErrTestFails

CVodeGetQuadErrWeights‘

Call flag = CVodeGetQuadErrWeights(cvode mem, eQweight);

Description The function CVodeGetQuadErrWeights returns the quadrature error weights at the
current time.

Arguments cvodemem (void *) pointer to the CVODES memory block.
eQueight (N_Vector) quadrature error weights at the current time.
Return value The return value flag (of type int) is one of:
CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_NO_QUAD Quadrature integration has not been initialized.
Notes The user must allocate memory for eQueight.

If quadratures were not included in the error control mechanism (through a call to
CVodeSetQuadErrCon with errcon = SUNTRUE), CVodeGetQuadErrWeights does not
set the eQuweight vector.

F2003 Name FCVodeGetQuadErrWeights

CVodeGetQuadStats‘

Call flag = CVodeGetQuadStats(cvodemem, &nfQevals, &nQetfails);
Description The function CVodeGetQuadStats returns the CVODES integrator statistics as a group.
Arguments cvodemem (void *) pointer to the CVODES memory block.

nfQevals (long int) number of calls to the user’s £Q function.

nQetfails (long int) number of error test failures due to quadrature variables.
Return value The return value flag (of type int) is one of

CV_SUCCESS the optional output values have been successfully set.

CV_MEM_NULL the cvode_mem pointer is NULL.

CV_NO_QUAD Quadrature integration has not been initialized.

F2003 Name FCVodeGetQuadStats

4.7.6 User-supplied function for quadrature integration

For integration of quadrature equations, the user must provide a function that defines the right-hand
side of the quadrature equations (in other words, the integrand function of the integral that must be
evaluated). This function must be of type CVQuadRhsFn defined as follows:

CVQuadRhsFn

Definition typedef int (*CVQuadRhsFn) (realtype t, N_Vector y,
N_Vector yQdot, void *user_data);

Purpose This function computes the quadrature equation right-hand side for a given value of the
independent variable ¢ and state vector y.

Arguments t is the current value of the independent variable.

4.8 Preconditioner modules 101

y is the current value of the dependent variable vector, y(t).
yQdot is the output vector fqg(t,y).
user_data is the user_data pointer passed to CVodeSetUserData.

Return value A CVQuadRhsFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case CVODES will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and CV_QRHSFUNC_FAIL is re-
turned).

Notes Allocation of memory for yQdot is automatically handled within CVODES.

Both y and yQdot are of type N_Vector, but they typically have different internal
representations. It is the user’s responsibility to access the vector data consistently
(including the use of the correct accessor macros from each NVECTOR implementation).
For the sake of computational efficiency, the vector functions in the two NVECTOR
implementations provided with CVODES do not perform any consistency checks with
respect to their N_Vector arguments (see §9.3 and §9.4).

There are two situations in which recovery is not possible even if CVQuadRhsFn func-
tion returns a recoverable error flag. One is when this occurs at the very first call to
the CVQuadRhsFn (in which case CVODES returns CV_FIRST_QRHSFUNC_ERR). The other
is when a recoverable error is reported by CVQuadRhsFn after an error test failure,
while the linear multistep method order is equal to 1 (in which case CVODES returns
CV_UNREC_QRHSFUNC_ERR).

4.8 Preconditioner modules

The efficiency of Krylov iterative methods for the solution of linear systems can be greatly enhanced
through preconditioning. For problems in which the user cannot define a more effective, problem-
specific preconditioner, CVODES provides a banded preconditioner in the module CVBANDPRE and a
band-block-diagonal preconditioner module CVBBDPRE.

4.8.1 A serial banded preconditioner module

This preconditioner provides a band matrix preconditioner for use with iterative SUNLINSOL modules
through the cvLs linear solver interface, in a serial setting. It uses difference quotients of the ODE
right-hand side function f to generate a band matrix of bandwidth m; + m, + 1, where the number
of super-diagonals (m,,, the upper half-bandwidth) and sub-diagonals (m;, the lower half-bandwidth)
are specified by the user, and uses this to form a preconditioner for use with the Krylov linear
solver. Although this matrix is intended to approximate the Jacobian df/dy, it may be a very crude
approximation. The true Jacobian need not be banded, or its true bandwidth may be larger than
my; + my + 1, as long as the banded approximation generated here is sufficiently accurate to speed
convergence as a preconditioner.

In order to use the CVBANDPRE module, the user need not define any additional functions. Aside
from the header files required for the integration of the ODE problem (see §4.3), to use the CVBANDPRE
module, the main program must include the header file cvodes_bandpre.h which declares the needed
function prototypes. The following is a summary of the usage of this module. Steps that are unchanged
from the skeleton program presented in §4.4 are grayed out.

1. Initialize multi-threaded environment, if appropriate
2. Set problem dimensions etc.

3. Set vector of initial values

4. Create CVODES object

5. Initialize CVODES solver

102 Using CVODES for IVP Solution

6. Specify integration tolerances

7. Create linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC_LEFT
or PREC_RIGHT) to use.

8. Set linear solver optional inputs
9. Attach linear solver module

10. Initialize the CVBANDPRE preconditioner module
Specify the upper and lower half-bandwidths (mu and m1, respectively) and call
flag = CVBandPrecInit(cvodemem, N, mu, ml);

to allocate memory and initialize the internal preconditioner data.

11. Set optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to the CVodeSetPreconditioner optional input function.

12. Create nonlinear solver object

13. Attach nonlinear solver module

14. Set nonlinear solver optional inputs
15. Specify rootfinding problem

16. Advance solution in time

17. Get optional outputs

Additional optional outputs associated with CVBANDPRE are available by way of two routines
described below, CVBandPrecGetWorkSpace and CVBandPrecGetNumRhsEvals.

18. Deallocate memory for solution vector
19. Free solver memory

20. Free nonlinear solver memory

21. Free linear solver memory

The CVBANDPRE preconditioner module is initialized and attached by calling the following function:

’CVBandPrecInit‘

Call flag = CVBandPrecInit(cvodemem, N, mu, ml);

Description The function CVBandPrecInit initializes the CVBANDPRE preconditioner and allocates
required (internal) memory for it.

Arguments cvodemem (void *) pointer to the CVODES memory block.

N (sunindextype) problem dimension.
mu (sunindextype) upper half-bandwidth of the Jacobian approximation.
ml (sunindextype) lower half-bandwidth of the Jacobian approximation.

Return value The return value flag (of type int) is one of

CVLS_SUCCESS The call to CVBandPrecInit was successful.

4.8 Preconditioner modules 103

Notes

F2003 Name

CVLS_MEM NULL The cvode mem pointer was NULL.

CVLS_MEM_FAIL A memory allocation request has failed.

CVLS_LMEM_NULL A CVLS linear solver memory was not attached.

CVLS_ILL_INPUT The supplied vector implementation was not compatible with block
band preconditioner.

The banded approximate Jacobian will have nonzero elements only in locations (i, j)

with —ml < j — ¢ < mu.
FCVBandPrecInit

The following three optional output functions are available for use with the CVBANDPRE module:

CVBandPrecGetWorkSpace

Call
Description

Arguments

Return value

Notes

F2003 Name

flag = CVBandPrecGetWorkSpace(cvode mem, &lenrwBP, &leniwBP);

The function CVBandPrecGetWorkSpace returns the sizes of the CVBANDPRE real and
integer workspaces.

cvode mem (void *) pointer to the CVODES memory block.
lenrwBP (long int) the number of realtype values in the CVBANDPRE workspace.
leniwBP (long int) the number of integer values in the CVBANDPRE workspace.

The return value flag (of type int) is one of:

CVLS_SUCCESS The optional output values have been successfully set.
CVLS_PMEM NULL The CVBANDPRE preconditioner has not been initialized.
The workspace requirements reported by this routine correspond only to memory al-

located within the CVBANDPRE module (the banded matrix approximation, banded
SUNLINSOL object, and temporary vectors).

The workspaces referred to here exist in addition to those given by the corresponding
function CVodeGetLinWorkSpace.

FCVBandPrecGetWorkSpace

’CVBandPrecGetNumRhsEvals‘

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = CVBandPrecGetNumRhsEvals(cvode mem, &nfevalsBP);

The function CVBandPrecGetNumRhsEvals returns the number of calls made to the
user-supplied right-hand side function for the finite difference banded Jacobian approx-
imation used within the preconditioner setup function.

cvodemem (void *) pointer to the CVODES memory block.

nfevalsBP (long int) the number of calls to the user right-hand side function.
The return value flag (of type int) is one of:

CVLS_SUCCESS The optional output value has been successfully set.
CVLS_PMEM NULL The CVBANDPRE preconditioner has not been initialized.

The counter nfevalsBP is distinct from the counter nfevalsLS returned by the corre-
sponding function CVodeGetNumLinRhsEvals and nfevals returned by
CVodeGetNumRhsEvals. The total number of right-hand side function evaluations is the
sum of all three of these counters.

FCVBandPrecGetNumRhsEvals

104 Using CVODES for IVP Solution

4.8.2 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel ODE solver such as CVODES lies in the solution of partial
differential equations (PDEs). Moreover, the use of a Krylov iterative method for the solution of many
such problems is motivated by the nature of the underlying linear system of equations (2.6) that must
be solved at each time step. The linear algebraic system is large, sparse, and structured. However, if
a Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner needs to
be used. Otherwise, the rate of convergence of the Krylov iterative method is usually unacceptably
slow. Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [40] and is
included in a software module within the CVODES package. This module works with the parallel vector
module NVECTOR_PARALLEL and is usable with any of the Krylov iterative linear solvers through the
CVLS interface. It generates a preconditioner that is a block-diagonal matrix with each block being
a band matrix. The blocks need not have the same number of super- and sub-diagonals and these
numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module is called
CVBBDPRE.

One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping subdomains. Each of these subdomains is then
assigned to one of the M processes to be used to solve the ODE system. The basic idea is to isolate the
preconditioning so that it is local to each process, and also to use a (possibly cheaper) approximate
right-hand side function. This requires the definition of a new function ¢(¢,y) which approximates
the function f(t,y) in the definition of the ODE system (2.1). However, the user may set g = f.
Corresponding to the domain decomposition, there is a decomposition of the solution vector y into
M disjoint blocks y,,, and a decomposition of g into blocks ¢g,,. The block g,, depends both on y,,
and on components of blocks y,,/ associated with neighboring subdomains (so-called ghost-cell data).
Let ¥, denote y,, augmented with those other components on which g,, depends. Then we have

g(t,y) = [91(t,51), 92(t, G2, - - ., gna (£, Gne)] " (4.1)

and each of the blocks g, (¢, ¥) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P = diag[Py, Py, ..., Py] (4.2)

where
Po~I—~Jn, (4.3)

and J,, is a difference quotient approximation to 9¢,,/Oyn,. This matrix is taken to be banded, with
upper and lower half-bandwidths mudq and mldq defined as the number of non-zero diagonals above
and below the main diagonal, respectively. The difference quotient approximation is computed using
mudq + mldq +2 evaluations of g,,, but only a matrix of bandwidth mukeep + mlkeep +1 is retained.
Neither pair of parameters need be the true half-bandwidths of the Jacobian of the local block of g,
if smaller values provide a more efficient preconditioner. The solution of the complete linear system

Px=1b (4.4)

reduces to solving each of the equations
Pz, = by (4.5)

and this is done by banded LU factorization of P,, followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatments of the blocks
P,,. For example, incomplete LU factorization or an iterative method could be used instead of banded
LU factorization.

The cvBBDPRE module calls two user-provided functions to construct P: a required function gloc
(of type CVLocalFn) which approximates the right-hand side function g(¢,y) ~ f(t,y) and which is
computed locally, and an optional function cfn (of type CVCommFn) which performs all interprocess

4.8 Preconditioner modules 105

communication necessary to evaluate the approximate right-hand side g. These are in addition to the
user-supplied right-hand side function £. Both functions take as input the same pointer user_data
that is passed by the user to CVodeSetUserData and that was passed to the user’s function £f. The
user is responsible for providing space (presumably within user_data) for components of y that are
communicated between processes by cfn, and that are then used by gloc, which should not do any
communication.

CVLocalFn

Definition typedef int (*CVLocalFn) (sunindextype Nlocal, realtype t, N_Vector y,
N_Vector glocal, void xuser_data) ;

Purpose This gloc function computes g(t,y). It loads the vector glocal as a function of t and
y.
Arguments Nlocal is the local vector length.
t is the value of the independent variable.
y is the dependent variable.
glocal is the output vector.

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

Return value A CVLocalFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case CVODES will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVode returns CV_.LSETUP_FAIL).

Notes This function must assume that all interprocess communication of data needed to cal-
culate glocal has already been done, and that this data is accessible within user_data.

The case where g is mathematically identical to f is allowed.

Definition ~ typedef int (*CVCommFn) (sunindextype Nlocal, realtype t,
N_Vector y, void *user_data) ;

Purpose This cfn function performs all interprocess communication necessary for the execution
of the gloc function above, using the input vector y.

Arguments Nlocal is the local vector length.
t is the value of the independent variable.
y is the dependent variable.

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

Return value A CVCommFn should return 0 if successful, a positive value if a recoverable error occurred
(in which case CVODES will attempt to correct), or a negative value if it failed unrecov-
erably (in which case the integration is halted and CVode returns CV_LSETUP_FAIL).

Notes The cfn function is expected to save communicated data in space defined within the
data structure user_data.

Each call to the cfn function is preceded by a call to the right-hand side function f
with the same (t, y) arguments. Thus, cfn can omit any communication done by f
if relevant to the evaluation of glocal. If all necessary communication was done in f,
then cfn = NULL can be passed in the call to CVBBDPrecInit (see below).

Besides the header files required for the integration of the ODE problem (see §4.3), to use the
CVBBDPRE module, the main program must include the header file cvodes_bbdpre.h which declares
the needed function prototypes.

The following is a summary of the proper usage of this module. Steps that are unchanged from
the skeleton program presented in §4.4 are grayed out.

106 Using CVODES for IVP Solution

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Initialize MPI environment

. Set problem dimensions etc.

. Set vector of initial values

. Create CVODES object

. Initialize CVODES solver

. Specify integration tolerances

. Create linear solver object

When creating the iterative linear solver object, specify the type of preconditioning (PREC_LEFT
or PREC_RIGHT) to use.

. Set linear solver optional inputs
. Attach linear solver module

Initialize the CVBBDPRE preconditioner module
Specify the upper and lower half-bandwidths mudq and m1dq, and mukeep and mlkeep, and call

flag = CVBBDPrecInit(cvodemem, local N, mudq, mldg,
mukeep, mlkeep, dqrely, gloc, cfn);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
CVBBDPrecInit are the two user-supplied functions described above.

Set optional inputs

Note that the user should not overwrite the preconditioner setup function or solve function through
calls to the CVodeSetPreconditioner optional input function.

Create nonlinear solver object
Attach nonlinear solver module

Set nonlinear solver optional inputs
Specify rootfinding problem
Advance solution in time

Get optional outputs

Additional optional outputs associated with CVBBDPRE are available by way of two routines de-
scribed below, CVBBDPrecGetWorkSpace and CVBBDPrecGetNumGfnEvals.

Deallocate memory for solution vector
Free solver memory

Free nonlinear solver memory

Free linear solver memory

Finalize MPI

The user-callable functions that initialize (step 10 above) or re-initialize the CVBBDPRE preconditioner
module are described next.

4.8 Preconditioner modules 107

| CVBBDPrecInit]

Call flag = CVBBDPrecInit(cvodemem, local N, mudq, mldq,
mukeep, mlkeep, dqrely, gloc, cfn) ;

Description The function CVBBDPrecInit initializes and allocates (internal) memory for the CvBB-
DPRE preconditioner.
Arguments cvode mem (void *) pointer to the CVODES memory block.
local N (sunindextype) local vector length.
mudq (sunindextype) upper half-bandwidth to be used in the difference quotient
Jacobian approximation.
mldq (sunindextype) lower half-bandwidth to be used in the difference quotient
Jacobian approximation.
mukeep (sunindextype) upper half-bandwidth of the retained banded approximate
Jacobian block.
mlkeep (sunindextype) lower half-bandwidth of the retained banded approximate
Jacobian block.
dqrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dqrely= +/unit roundoff, which
can be specified by passing dqrely = 0.0.

gloc (CVLocalFn) the C function which computes the approximation g(t,y) =~
ft,y).
cfn (CVCommFn) the optional C function which performs all interprocess commu-

nication required for the computation of g(t,y).
Return value The return value flag (of type int) is one of

CVLS_SUCCESS The call to CVBBDPrecInit was successful.
CVLS_MEM NULL The cvode mem pointer was NULL.
CVLS_MEM_FAIL A memory allocation request has failed.
CVLS_LMEM_NULL A cVLS linear solver was not attached.

CVLS_ILL_INPUT The supplied vector implementation was not compatible with block
band preconditioner.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference quotient cal-
culation of the approximate Jacobian is negative or exceeds the value local N—1, it is
replaced by 0 or local N—1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of g when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computational costs further.

For all four half-bandwidths, the values need not be the same on every processor.
F2003 Name FCVBBDPrecInit

The cvBBDPRE module also provides a reinitialization function to allow solving a sequence of
problems of the same size, with the same linear solver choice, provided there is no change in local N,
mukeep, or mlkeep. After solving one problem, and after calling CVodeReInit to re-initialize CVODES
for a subsequent problem, a call to CVBBDPrecReInit can be made to change any of the following: the
half-bandwidths mudq and m1dq used in the difference-quotient Jacobian approximations, the relative
increment dqrely, or one of the user-supplied functions gloc and cfn. If there is a change in any of
the linear solver inputs, an additional call to the “Set” routines provided by the SUNLINSOL module,
and/or one or more of the corresponding CVLS “set” functions, must also be made (in the proper
order).

108 Using CVODES for IVP Solution
| CVBBDPrecReInit

Call flag = CVBBDPrecReInit(cvode mem, mudq, mldg, dqrely);

Description The function CVBBDPrecReInit re-initializes the CVBBDPRE preconditioner.
Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

Notes

F2003 Name

mudq (sunindextype) upper half-bandwidth to be used in the difference quotient
Jacobian approximation.

mldq (sunindextype) lower half-bandwidth to be used in the difference quotient
Jacobian approximation.

dgrely (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dgrely = +/unit roundoff, which
can be specified by passing dqrely = 0.0.

The return value flag (of type int) is one of

CVLS_SUCCESS The call to CVBBDPrecReInit was successful.
CVLS_MEM_NULL The cvode_mem pointer was NULL.

CVLS_LMEM_NULL A cvVLs linear solver memory was not attached.
CVLS_PMEM_NULL The function CVBBDPrecInit was not previously called.

If one of the half-bandwidths mudq or m1dq is negative or exceeds the value local N—1,
it is replaced by 0 or local N—1 accordingly.

FCVBBDPrecRelnit

The following two optional output functions are available for use with the CVBBDPRE module:

CVBBDPrecGetWorkSpace

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = CVBBDPrecGetWorkSpace(cvode mem, &lenrwBBDP, &leniwBBDP);

The function CVBBDPrecGetWorkSpace returns the local CVBBDPRE real and integer
workspace sizes.

cvode mem (void *) pointer to the CVODES memory block.

lenrwBBDP (long int) local number of realtype values in the CVBBDPRE workspace.
leniwBBDP (long int) local number of integer values in the CVBBDPRE workspace.
The return value flag (of type int) is one of

CVLS_SUCCESS The optional output value has been successfully set.

CVLS_MEM_NULL The cvode_mem pointer was NULL.

CVLS_PMEM NULL The CVBBDPRE preconditioner has not been initialized.

The workspace requirements reported by this routine correspond only to memory allo-
cated within the CVBBDPRE module (the banded matrix approximation, banded SUN-
LINSOL object, temporary vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding
function CVodeGetLinWorkSpace.

FCVBBDPrecGetWorkSpace

| CVBBDPrecGetNumGfnEvals |

Call

Description

Arguments

flag = CVBBDPrecGetNumGfnEvals(cvode mem, &ngevalsBBDP);

The function CVBBDPrecGetNumGfnEvals returns the number of calls made to the user-
supplied gloc function due to the finite difference approximation of the Jacobian blocks
used within the preconditioner setup function.

cvodemem (void *) pointer to the CVODES memory block.

4.8 Preconditioner modules 109

ngevalsBBDP (long int) the number of calls made to the user-supplied gloc function.
Return value The return value flag (of type int) is one of

CVLS_SUCCESS The optional output value has been successfully set.

CVLS_MEM NULL The cvode mem pointer was NULL.

CVLS_PMEM NULL The CVBBDPRE preconditioner has not been initialized.
F2003 Name FCVBBDPrecGetNumGfnEvals

In addition to the ngevalsBBDP gloc evaluations, the costs associated with CVBBDPRE also in-
clude nlinsetups LU factorizations, nlinsetups calls to cfn, npsolves banded backsolve calls, and
nfevalsLS right-hand side function evaluations, where nlinsetups is an optional CVODES output and
npsolves and nfevalsLS are linear solver optional outputs (see §4.5.9).

Chapter 5

Using CVODES for Forward
Sensitivity Analysis

This chapter describes the use of CVODES to compute solution sensitivities using forward sensitivity
analysis. One of our main guiding principles was to design the CVODES user interface for forward
sensitivity analysis as an extension of that for IVP integration. Assuming a user main program and
user-defined support routines for IVP integration have already been defined, in order to perform
forward sensitivity analysis the user only has to insert a few more calls into the main program and
(optionally) define an additional routine which computes the right-hand side of the sensitivity systems
(2.12). The only departure from this philosophy is due to the CVRhsFn type definition (§4.6.1).
Without changing the definition of this type, the only way to pass values of the problem parameters
to the ODE right-hand side function is to require the user data structure £ _data to contain a pointer
to the array of real parameters p.

CVODES uses various constants for both input and output. These are defined as needed in this
chapter, but for convenience are also listed separately in Appendix B.

We begin with a brief overview, in the form of a skeleton user program. Following that are detailed
descriptions of the interface to the various user-callable routines and of the user-supplied routines that
were not already described in Chapter 4.

5.1 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) as an application of
CVODES. The user program is to have these steps in the order indicated, unless otherwise noted. For
the sake of brevity, we defer many of the details to the later sections. As in §4.4, most steps are
independent of the NVECTOR, SUNMATRIX, SUNLINSOL, and SUNNONLINSOL implementations used.
For the steps that are not, refer to Chapters 9, 10, 11, and 12 for the specific name of the function to
be called or macro to be referenced.

Differences between the user main program in §4.4 and the one below start only at step (16). Steps
that are unchanged from the skeleton program presented in §4.4 are grayed out.

First, note that no additional header files need be included for forward sensitivity analysis beyond
those for IVP solution (§4.4).

1. Initialize parallel or multi-threaded environment, if appropriate
2. Set problem dimensions etc.

3. Set vector of initial values

4. Create CVODES object

5. Initialize CVODES solver

112

Using CVODES for Forward Sensitivity Analysis

10.

11.

12.

13.

14.

15.

16.

Specify integration tolerances

Create matrix object

Create linear solver object

Set linear solver optional inputs

Attach linear solver module

Set optional inputs

Create nonlinear solver object

Attach nonlinear solver module

Set nonlinear solver optional inputs

Initialize quadrature problem, if not sensitivity-dependent

Define the sensitivity problem

eNumber of sensitivities (required)
Set Ns = N, the number of parameters with respect to which sensitivities are to be computed.

eProblem parameters (optional)
If ¢cVODES is to evaluate the right-hand sides of the sensitivity systems, set p, an array of
Np real parameters upon which the IVP depends. Only parameters with respect to which
sensitivities are (potentially) desired need to be included. Attach p to the user data structure
user_data. For example, user_data->p = p;
If the user provides a function to evaluate the sensitivity right-hand side, p need not be
specified.

eParameter list (optional)

If cVODES is to evaluate the right-hand sides of the sensitivity systems, set plist, an array
of Ns integers to specify the parameters p with respect to which solution sensitivities are to
be computed. If sensitivities with respect to the j-th parameter p[j] are desired (0 < j <
Np), set plist, = 7, for some ¢ =0,..., Ny — 1.

If plist is not specified, CVODES will compute sensitivities with respect to the first Ns
parameters; i.e., plist; =4 (1 =0,...,N; — 1).

If the user provides a function to evaluate the sensitivity right-hand side, plist need not be
specified.

eParameter scaling factors (optional)

If CVODES is to estimate tolerances for the sensitivity solution vectors (based on tolerances
for the state solution vector) or if CVODES is to evaluate the right-hand sides of the sensitivity
systems using the internal difference-quotient function, the results will be more accurate if
order of magnitude information is provided.

Set pbar, an array of Ns positive scaling factors. Typically, if p; # 0, the value p; = |pplist, |
can be used.

If pbar is not specified, CVODES will use p; = 1.0.

If the user provides a function to evaluate the sensitivity right-hand side and specifies toler-
ances for the sensitivity variables, pbar need not be specified.

Note that the names for p, pbar, plist, as well as the field p of user_data are arbitrary, but they
must agree with the arguments passed to CVodeSetSensParams below.

5.1 A skeleton of the user’s main program 113

17.

18.

19.

20.

21.

22.

Set sensitivity initial conditions

Set the Ns vectors ySO[i] of initial values for sensitivities (for ¢ = 0,..., Ns —1), using the
appropriate functions defined by the particular NVECTOR implementation chosen.

First, create an array of Ns vectors by making the appropriate call

yS0 = N_VCloneVectorArray_x**(Ns, y0);
or
ySO = N_VCloneVectorArrayEmpty_#**(Ns, y0);

Here the argument yO0 serves only to provide the N_Vector type for cloning.

Then, for each ¢ =0,... ,Ns —1, load initial values for the ¢-th sensitivity vector ySO[i].

Activate sensitivity calculations

Call flag = CVodeSensInit or CVodeSensInitl to activate forward sensitivity computations and
allocate internal memory for CVODES related to sensitivity calculations (see §5.2.1).

Set sensitivity tolerances

Call CVodeSensSStolerances, CVodeSensSVtolerances or CVodeEEtolerances. (See §5.2.2).

Set sensitivity analysis optional inputs

Call CVodeSetSens* routines to change from their default values any optional inputs that control
the behavior of CVODES in computing forward sensitivities. (See §5.2.6.)

Create sensitivity nonlinear solver object (optional)

If using a non-default nonlinear solver (see §5.2.3), then create the desired nonlinear solver object
by calling the appropriate constructor function defined by the particular SUNNONLINSOL imple-
mentation e.g.,

NLSSens = SUNNonlinSol_x***Sens(...);
for the CV_SIMULTANEQUS or CV_STAGGERED options or

NLSSens = SUNNonlinSol_x*x(...);

for the CV_STAGGERED1 option where *** is the name of the nonlinear solver and ... are con-
structor specific arguments (see Chapter 12 for details).

Attach the sensitvity nonlinear solver module (optional)

If using a non-default nonlinear solver, then initialize the nonlinear solver interface by attaching
the nonlinear solver object by calling

ier = CVodeSetNonlinearSolverSensSim(cvode_mem, NLSSens);
when using the CV_SIMULTANEQUS corrector method,

ier = CVodeSetNonlinearSolverSensStg(cvode_mem, NLSSens);
when using the CV_STAGGERED corrector method, or

ier = CVodeSetNonlinearSolverSensStgl(cvode_mem, NLSSens);

when using the CV_STAGGERED1 corrector method (see §5.2.3 for details).

114 Using CVODES for Forward Sensitivity Analysis

23. Set sensitivity nonlinear solver optional inputs (optional)

Call the appropriate set functions for the selected nonlinear solver module to change optional
inputs specific to that nonlinear solver. These must be called after CVodeSensInit if using the
default nonlinear solver or after attaching a new nonlinear solver to CVODES, otherwise the optional
inputs will be overridden by cvODE defaults. See Chapter 12 for more information on optional
inputs.

24. Specify rootfinding
25. Advance solution in time

26. Extract sensitivity solution

After each successful return from CVode, the solution of the original IVP is available in the y
argument of CVode, while the sensitivity solution can be extracted into yS (which can be the
same as yS0) by calling one of the routines CVodeGetSens,CVodeGetSens1, CVodeGetSensDky, or
CVodeGetSensDky1l (see §5.2.5).

27. Get optional outputs
28. Deallocate memory for solution vector

29. Deallocate memory for sensitivity vectors

Upon completion of the integration, deallocate memory for the vectors ySO using the appropriate
destructor:

N_VDestroyVectorArray ***(ySO, Ns);

If yS was created from realtype arrays yS_i, it is the user’s responsibility to also free the space
for the arrays yS0_i.

30. Free user data structure

31. Free solver memory

32. Free nonlinear solver memory

33. Free vector specification memory

34. Free linear solver and matrix memory

35. Finalize MPI, if used

5.2 User-callable routines for forward sensitivity analysis

This section describes the CVODES functions, in addition to those presented in §4.5, that are called by
the user to setup and solve a forward sensitivity problem.

5.2.1 Forward sensitivity initialization and deallocation functions

Activation of forward sensitivity computation is done by calling CVodeSensInit or CVodeSensInitl,
depending on whether the sensitivity right-hand side function returns all sensitivities at once or one
by one, respectively. The form of the call to each of these routines is as follows:

’ CVodeSensInit

Call flag = CVodeSensInit(cvode_mem, Ns, ism, fS, yS0);

5.2 User-callable routines for forward sensitivity analysis 115

Description

Arguments

Return value

The routine CVodeSensInit activates forward sensitivity computations and allocates

internal memory related to sensitivity calculations.

cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.

Ns (int) the number of sensitivities to be computed.

ism (int) a flag used to select the sensitivity solution method. Its value can be
CV_SIMULTANEQUS or CV_STAGGERED:

e In the CV_SIMULTANEQUS approach, the state and sensitivity variables
are corrected at the same time. If the default Newton nonlinear solver
is used, this amounts to performing a modified Newton iteration on the
combined nonlinear system;

e In the CV_STAGGERED approach, the correction step for the sensitivity
variables takes place at the same time for all sensitivity equations, but
only after the correction of the state variables has converged and the
state variables have passed the local error test;

£S (CVSensRhsFn) is the C function which computes all sensitivity ODE right-
hand sides at the same time. For full details see §5.3.

yS0 (N_Vector *) a pointer to an array of Ns vectors containing the initial values
of the sensitivities.

The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeSensInit was successful.

CV_.MEM_NULL The CcVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_MEM_FAIL A memory allocation request has failed.
CV_ILL_INPUT An input argument to CVodeSensInit has an illegal value.

Notes Passing £S=NULL indicates using the default internal difference quotient sensitivity right-
hand side routine.
If an error occurred, CVodeSensInit also sends an error message to the error handler
function.
It is illegal here to use ism = CV_STAGGERED1. This option requires a different type for
£S and can therefore only be used with CVodeSensInitl (see below).

F2003 Name FCVodeSensInit

| CVodeSensInitl

Call flag = CVodeSensInitl(cvodemem, Ns, ism, £S1, yS0);

Description The routine CVodeSensInitl activates forward sensitivity computations and allocates
internal memory related to sensitivity calculations.

Arguments cvodemem (void *) pointer to the CVODES memory block returned by CVodeCreate.

Ns (int) the number of sensitivities to be computed.

ism (int) a flag used to select the sensitivity solution method. Its value can be
CV_SIMULTANEQUS, CV_STAGGERED, or CV_STAGGERED1:

e In the CV_SIMULTANEQUS approach, the state and sensitivity variables
are corrected at the same time. If the default Newton nonlinear solver
is used, this amounts to performing a modified Newton iteration on the
combined nonlinear system;

e In the CV_STAGGERED approach, the correction step for the sensitivity
variables takes place at the same time for all sensitivity equations, but
only after the correction of the state variables has converged and the
state variables have passed the local error test;

116 Using CVODES for Forward Sensitivity Analysis

e In the CV_STAGGERED1 approach, all corrections are done sequentially,
first for the state variables and then for the sensitivity variables, one
parameter at a time. If the sensitivity variables are not included in
the error control, this approach is equivalent to CV_STAGGERED. Note
that the CV_STAGGERED1 approach can be used only if the user-provided
sensitivity right-hand side function is of type CVSensRhs1Fn (see §5.3).

£S1 (CVSensRhs1Fn) is the C function which computes the right-hand sides of
the sensitivity ODE, one at a time. For full details see §5.3.
ySO (N_Vector #) a pointer to an array of Ns vectors containing the initial values

of the sensitivities.
Return value The return value flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeSensInitl was successful.

CV_MEM_NULL The CcVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_MEM_FAIL A memory allocation request has failed.
CV_ILL_INPUT An input argument to CVodeSensInitl has an illegal value.

Notes Passing £S1=NULL indicates using the default internal difference quotient sensitivity
right-hand side routine.

If an error occurred, CVodeSensInitl also sends an error message to the error handler
funciton.

F2003 Name FCVodeSensInitil
In terms of the problem size N, number of sensitivity vectors V4, and maximum method order maxord,
the size of the real workspace is increased as follows:
e Base value: lenrw = lenrw + (maxord+5)N N
e With CVodeSensSVtolerances: lenrw = lenrw +N,N
the size of the integer workspace is increased as follows:
e Base value: leniw = leniw + (maxord+5)N N;

e With CVodeSensSVtolerances: leniw = leniw + N N;

where N; is the number of integers in one N_Vector.

The routine CVodeSensReInit, useful during the solution of a sequence of problems of same size,
reinitializes the sensitivity-related internal memory. The call to it must follow a call to CVodeSensInit
or CVodeSensInitl (and maybe a call to CVodeReInit). The number Ns of sensitivities is assumed to
be unchanged since the call to the initialization function. The call to the CVodeSensReInit function
has the form:

’CVodeSensReInit

Call flag = CVodeSensReInit(cvode mem, ism, ySO);
Description The routine CVodeSensReInit reinitializes forward sensitivity computations.

Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.

ism (int) a flag used to select the sensitivity solution method. Its value can be
CV_SIMULTANEQUS, CV_STAGGERED, or CV_STAGGERED1.
ySO (N_Vector *) a pointer to an array of Ns variables of type N_Vector con-

taining the initial values of the sensitivities.
Return value The return value flag (of type int) will be one of the following;:

CV_SUCCESS The call to CVodeReInit was successful.

5.2 User-callable routines for forward sensitivity analysis 117

CV_MEM_NULL The CVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_SENS Memory space for sensitivity integration was not allocated through a
previous call to CVodeSensInit.

CV_ILL_INPUT An input argument to CVodeSensReInit has an illegal value.
CV_MEM_FAIL A memory allocation request has failed.

Notes All arguments of CVodeSensReInit are the same as those of the functions CVodeSensInit
and CVodeSensInitl.

If an error occurred, CVodeSensReInit also sends a message to the error handler func-
tion.

CVodeSensReInit potentially does some minimal memory allocation (for the sensitivity
absolute tolerance) and for arrays of counters used by the CV_STAGGERED1 method.

The value of the input argument ism must be compatible with the type of the sensitivity
ODE right-hand side function. Thus if the sensitivity module was initialized using
CVodeSensInit, then it is illegal to pass ism = CV_STAGGERED1 to CVodeSensRelInit.

F2003 Name FCVodeSensRelInit

To deallocate all forward sensitivity-related memory (allocated in a prior call to CVodeSensInit or
CVodeSensInitl), the user must call

’CVodeSensFree‘

Call CVodeSensFree (cvode_mem) ;

Description The function CVodeSensFree frees the memory allocated for forward sensitivity com-
putations by a previous call to CVodeSensInit or CVodeSensInitl.

Arguments The argument is the pointer to the CVODES memory block (of type void *).
Return value The function CVodeSensFree has no return value.

Notes In general, CVodeSensFree need not be called by the user, as it is invoked automatically
by CVodeFree.

After a call to CVodeSensFree, forward sensitivity computations can be reactivated only
by calling CVodeSensInit or CVodeSensInitl again.

F2003 Name FCVodeSensFree

To activate and deactivate forward sensitivity calculations for successive CVODES runs, without having
to allocate and deallocate memory, the following function is provided:

CVodeSensToggleOff

Call CVodeSensToggleOff (cvode mem) ;

Description The function CVodeSensToggleOff deactivates forward sensitivity calculations. It does
not deallocate sensitivity-related memory.

Arguments cvode mem (void *) pointer to the memory previously returned by CVodeCreate.
Return value The return value flag of CVodeSensToggle is one of:

CV_SUCCESS CVodeSensToggle0ff was successful.
CV_MEM_NULL cvode_mem was NULL.

Notes Since sensitivity-related memory is not deallocated, sensitivities can be reactivated at
a later time (using CVodeSensReInit).

F2003 Name FCVodeSensToggleOff

118 Using CVODES for Forward Sensitivity Analysis

5.2.2 Forward sensitivity tolerance specification functions

One of the following three functions must be called to specify the integration tolerances for sensitivities.
Note that this call must be made after the call to CVodeSensInit/CVodeSensInitl.

’CVodeSensSStolerances‘

Call flag = CVodeSensSStolerances(cvode mem, reltolS, abstolS);
Description The function CVodeSensSStolerances specifies scalar relative and absolute tolerances.

Arguments cvodemem (void *) pointer to the CVODES memory block returned by CVodeCreate.
reltolS (realtype) is the scalar relative error tolerance.
abstolS (realtype*) is a pointer to an array of length Ns containing the scalar
absolute error tolerances, one for each parameter.
Return value The return flag flag (of type int) will be one of the following;:

CV_SUCCESS The call to CVodeSStolerances was successful.

CV_MEM_NULL The cVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_SENS The sensitivity allocation function (CVodeSensInit or CVodeSensInitl)
has not been called.

CV_ILL_INPUT One of the input tolerances was negative.
F2003 Name FCVodeSensSStolerances

’CVodeSensSVtolerances‘

Call flag = CVodeSensSVtolerances(cvode mem, reltolS, abstolS);

Description The function CVodeSensSVtolerances specifies scalar relative tolerance and vector ab-
solute tolerances.
Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.
reltolS (realtype) is the scalar relative error tolerance.
abstolS (N_Vector*) is an array of Ns variables of type N_Vector. The N_Vector
from abstolS[is] specifies the vector tolerances for is-th sensitivity.
Return value The return flag flag (of type int) will be one of the following:

CV_SUCCESS The call to CVodeSVtolerances was successful.

CV_MEM_NULL The cVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_SENS The allocation function for sensitivities has not been called.
CV_ILL_INPUT The relative error tolerance was negative or an absolute tolerance vector
had a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of any vector yS[i].

F2003 Name FCVodeSensSVtolerances

’CVodeSensEEtolerances

Call flag = CVodeSensEEtolerances(cvode mem) ;

Description When CVodeSensEEtolerances is called, CVODES will estimate tolerances for sensitivity
variables based on the tolerances supplied for states variables and the scaling factors p.

Arguments cvode mem (void *) pointer to the CVODES memory block returned by CVodeCreate.

Return value The return flag flag (of type int) will be one of the following:

5.2 User-callable routines for forward sensitivity analysis 119

CV_SUCCESS The call to CVodeSensEEtolerances was successful.

CV_.MEM_NULL The CcVODES memory block was not initialized through a previous call
to CVodeCreate.

CV_NO_SENS The sensitivity allocation function has not been called.
Notes
F2003 Name FCVodeSensEEtolerances

5.2.3 Forward sensitivity nonlinear solver interface functions

As in the pure ODE case, when computing solution sensitivities using forward sensitivitiy analysis
CVODES uses the SUNNONLINSOL implementation of Newton’s method defined by the SUNNONLIN-
SOL_.NEWTON module (see §12.3) by default. To specify a different nonlinear solver in CVODES, the
user’s program must create a SUNNONLINSOL object by calling the appropriate constructor routine.
The user must then attach the SUNNONLINSOL object to CVODES by calling
CVodeSetNonlinearSolverSensSim when using the CV_SIMULTANEQUS corrector option, or
CVodeSetNonlinearSolver (see §4.5.4) and CVodeSetNonlinearSolverSensStg or
CVodeSetNonlinearSolverSensStgl when using the CV_STAGGERED or CV_STAGGERED1 corrector
option respectively, as documented below.

When changing the nonlinear solver in CVODES, CVodeSetNonlinearSolver must be called af-
ter CVodelInit; similarly CVodeSetNonlinearSolverSensSim, CVodeSetNonlinearSolverStg, and
CVodeSetNonlinearSolverStgl must be called after CVodeSensInit. If any calls to CVode have
been made, then CVODES will need to be reinitialized by calling CVodeReInit to ensure that the
nonlinear solver is initialized correctly before any subsequent calls to CVode.

The first argument passed to the routines CVodeSetNonlinearSolverSensSim,
CVodeSetNonlinearSolverSensStg, and CVodeSetNonlinearSolverSensStgl is the CVODES mem-
ory pointer returned by CVodeCreate and the second argument is the SUNNONLINSOL object to use
for solving the nonlinear systems (2.4) or (2.5). A call to this function attaches the nonlinear solver
to the main CVODES integrator.

’ CVodeSetNonlinearSolverSensSim ‘

Call flag = CVodeSetNonlinearSolverSensSim(cvode mem, NLS);

Description The function CVodeSetNonLinearSolverSensSim attaches a SUNNONLINSOL object (NLS)
to CVODES when using the CV_SIMULTANEQUS approach to correct the state and sensi-
tivity variables at the same time.

Arguments cvode mem (void *) pointer to the CVODES memory block.

NLS (SUNNonlinearSolver) SUNNONLINSOL object to use for solving nonlinear
systems (2.4) or (2.5).
Return value The return value flag (of type int) is one of

CV_SUCCESS The nonlinear solver was successfully attached.
CV_MEM NULL The cvode _mem pointer is NULL.

CV_ILL_INPUT The SUNNONLINSOL object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual
function, convergence test function, or maximum number of nonlinear
iterations could not be set.

F2003 Name FCVodeSetNonlinearSolverSensSim

CVodeSetNonlinearSolverSensStg

Call flag = CVodeSetNonlinearSolverSensStg(cvode mem, NLS);

120 Using CVODES for Forward Sensitivity Analysis

Description The function CVodeSetNonLinearSolverSensStg attaches a SUNNONLINSOL object (NLS)
to CVODES when using the CV_STAGGERED approach to correct all the sensitivity variables
after the correction of the state variables.

Arguments cvode mem (void *) pointer to the CVODES memory block.

Return value

Notes

F2003 Name

NLS (SUNNonlinearSolver) SUNNONLINSOL object to use for solving nonlinear
systems.

The return value flag (of type int) is one of

CV_SUCCESS The nonlinear solver was successfully attached.

CV_MEM NULL The cvode mem pointer is NULL.

CV_ILL_INPUT The SUNNONLINSOL object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual
function, convergence test function, or maximum number of nonlinear
iterations could not be set.

This function only attaches the SUNNONLINSOL object for correcting the sensitivity
variables. To attach a SUNNONLINSOL object for the state variable correction use
CVodeSetNonlinearSolver (see §4.5.4).

FCVodeSetNonlinearSolverSensStg

CVodeSetNonlinearSolverSensStgl ‘

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = CVodeSetNonlinearSolverSensStgl(cvode mem, NLS);

The function CVodeSetNonLinearSolverSensStgl attaches a SUNNONLINSOL object
(NLS) to CVODES when using the CV_STAGGERED1 approach to correct the sensitivity
variables one at a time after the correction of the state variables.

cvode mem (void *) pointer to the CVODES memory block.

NLS (SUNNonlinearSolver) SUNNONLINSOL object to use for solving nonlinear
systems.

The return value flag (of type int) is one of

CV_SUCCESS The nonlinear solver was successfully attached.

CV_MEM NULL The cvode mem pointer is NULL.

CV_ILL_INPUT The SUNNONLINSOL object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual
function, convergence test function, or maximum number of nonlinear
iterations could not be set.

This function only attaches the SUNNONLINSOL object for correcting the sensitivity
variables. To attach a SUNNONLINSOL object for the state variable correction use
CVodeSetNonlinearSolver (see §4.5.4).

FCVodeSetNonlinearSolverSensStgil

5.2.4 CVODES solver function

Even if forward sensitivity analysis was enabled, the call to the main solver function CVode is exactly
the same as in §4.5.6. However, in this case the return value flag can also be one of the following:
CV_SRHSFUNC_FAIL The sensitivity right-hand side function failed in an unrecoverable manner.

CV_FIRST_SRHSFUNC_ERR The sensitivity right-hand side function failed at the first call.

CV_REPTD_SRHSFUNC_ERR Convergence tests occurred too many times due to repeated recoverable

errors in the sensitivity right-hand side function. This flag will also be
returned if the sensitivity right-hand side function had repeated recoverable
errors during the estimation of an initial step size.

5.2 User-callable routines for forward sensitivity analysis 121

CV_UNREC_SRHSFUNC_ERR The sensitivity right-hand function had a recoverable error, but no recovery
was possible. This failure mode is rare, as it can occur only if the sensitivity
right-hand side function fails recoverably after an error test failed while at
order one.

5.2.5 Forward sensitivity extraction functions

If forward sensitivity computations have been initialized by a call to CVodeSensInit/CVodeSensInit1,
or reinitialized by a call to CVSensReInit, then CVODES computes both a solution and sensitivities
at time t. However, CVode will still return only the solution y in yout. Solution sensitivities can be
obtained through one of the following functions:

CVodeGetSens

Call flag = CVodeGetSens(cvode mem, &tret, yS);

Description The function CVodeGetSens returns the sensitivity solution vectors after a successful
return from CVode.
Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.
tret (realtype *) the time reached by the solver (output).
yS (N_Vector *) array of computed forward sensitivity vectors. This vector
array must be allocated by the user.
Return value The return value flag of CVodeGetSens is one of:

CV_SUCCESS CVodeGetSens was successful.
CV_MEM_NULL cvode_mem was NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.
CV_BAD_DKY yS is NULL.
Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last CVode call.
F2003 Name FCVodeGetSens

The function CVodeGetSensDky computes the k-th derivatives of the interpolating polynomials for the
sensitivity variables at time t. This function is called by CVodeGetSens with k = 0, but may also be
called directly by the user.

CVodeGetSensDky

Call flag = CVodeGetSensDky(cvode mem, t, k, dkyS);

Description The function CVodeGetSensDky returns derivatives of the sensitivity solution vectors
after a successful return from CVode.
Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

t (realtype) specifies the time at which sensitivity information is requested.
The time t must fall within the interval defined by the last successful step
taken by CVODES.

k (int) order of derivatives.
dkys (N_Vector #) array of Ns vectors containing the derivatives on output. The
space for dkyS must be allocated by the user.
Return value The return value flag of CVodeGetSensDky is one of:
CV_SUCCESS CVodeGetSensDky succeeded.
CV_MEM_NULL cvode_mem was NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.
CV_BAD.DKY One of the vectors dkyS is NULL.

122 Using CVODES for Forward Sensitivity Analysis

CV_BAD K k is not in the range 0,1, ..., qlast.
CV_BAD_T The time t is not in the allowed range.

F2003 Name FCVodeGetSensDky

Forward sensitivity solution vectors can also be extracted separately for each parameter in turn
through the functions CVodeGetSens1 and CVodeGetSensDky1, defined as follows:

’CVodeGetSensl
Call flag = CVodeGetSensl(cvode mem, &tret, is, yS);

Description The function CVodeGetSens1 returns the is-th sensitivity solution vector after a suc-
cessful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.

tret (realtype *) the time reached by the solver (output).
is (int) specifies which sensitivity vector is to be returned (0 <is< Nj).
yS (N_Vector) the computed forward sensitivity vector. This vector array must

be allocated by the user.

Return value The return value flag of CVodeGetSens1 is one of:
CV_SUCCESS CVodeGetSens1 was successful.
CV_MEM_NULL cvode_mem was NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.
CV_BAD_IS The index is is not in the allowed range.
CV_BAD_DKY yS is NULL.
CV_BAD_T The time t is not in the allowed range.

Notes Note that the argument tret is an output for this function. Its value will be the same
as that returned at the last CVode call.

F2003 Name FCVodeGetSensi

CVodeGetSensDky1l

Call flag = CVodeGetSensDkyl(cvode mem, t, k, is, dkyS);

Description The function CVodeGetSensDkyl returns the k-th derivative of the is-th sensitivity
solution vector after a successful return from CVode.

Arguments cvode mem (void *) pointer to the memory previously allocated by CVodeInit.
t (realtype) specifies the time at which sensitivity information is requested.

The time t must fall within the interval defined by the last successful step
taken by CVODES.

k (int) order of derivative.
is (int) specifies the sensitivity derivative vector to be returned (0 <is< Nj).
dkyS (N_Vector) the vector containing the derivative. The space for dkyS must

be allocated by the user.
Return value The return value flag of CVodeGetSensDky1 is one of:

CV_SUCCESS CVodeGetQuadDky1 succeeded.

CV_MEM_NULL The pointer to cvode mem was NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.
CV_BAD_DKY dkyS or one of the vectors dkyS[i] is NULL.
CV_BAD_IS The index is is not in the allowed range.
CV_BAD K k is not in the range 0,1, ..., qlast.

CV_BAD_T The time t is not in the allowed range.

F2003 Name FCVodeGetSensDkyl

5.2 User-callable routines for forward sensitivity analysis 123

5.2.6 Optional inputs for forward sensitivity analysis

Optional input variables that control the computation of sensitivities can be changed from their default
values through calls to CVodeSetSens* functions. Table 5.1 lists all forward sensitivity optional input
functions in ¢cVODES which are described in detail in the remainder of this section.

We note that, on an error return, all of the optional input functions send an error message to the
error handler function. All error return values are negative, so the test flag < 0 will catch all errors.
Finally, a call to a CVodeSetSens*** function can be made from the user’s calling program at any
time and, if successful, takes effect immediately.

] CVodeSetSensParams

Call flag = CVodeSetSensParams(cvode mem, p, pbar, plist);

Description The function CVodeSetSensParams specifies problem parameter information for sensi-
tivity calculations.
Arguments cvodemem (void *) pointer to the CVODES memory block.

P (realtype *) a pointer to the array of real problem parameters used to
evaluate f(¢,y,p). If non-NULL, p must point to a field in the user’s data
structure user_data passed to the right-hand side function. (See §5.1).

pbar (realtype *) an array of Ns positive scaling factors. If non-NULL, pbar must
have all its components > 0.0. (See §5.1).

plist (int *) an array of Ns non-negative indices to specify which components
plil to use in estimating the sensitivity equations. If non-NULL, plist
must have all components > 0. (See §5.1).

Return value The return value flag (of type int) is one of:

CV_SUCCESS The optional value has been successfully set.
CV_.MEM_NULL The cvode_mem pointer is NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.
CV_ILL_INPUT An argument has an illegal value.
Notes This function must be preceded by a call to CVodeSensInit or CVodeSensInitl.

F2003 Name FCVodeSetSensParams

CVodeSetSensDQMethod \

Call flag = CVodeSetSensDQMethod(cvode mem, DQtype, DQrhomax) ;

Description The function CVodeSetSensDQMethod specifies the difference quotient strategy in the
case in which the right-hand side of the sensitivity equations are to be computed by
CVODES.

Arguments cvodemem (void *) pointer to the CVODES memory block.

DQtype (int) specifies the difference quotient type. Its value can be CV_CENTERED
or CV_FORWARD.

Table 5.1: Forward sensitivity optional inputs

Optional input Routine name Default
Sensitivity scaling factors CVodeSetSensParams NULL

DQ approximation method CVodeSetSensDQMethod centered /0.0
Error control strategy CVodeSetSensErrCon SUNFALSE
Maximum no. of nonlinear iterations | CVodeSetSensMaxNonlinIters | 3

124

Using CVODES for Forward Sensitivity Analysis

Return value

DQrhomax (realtype) positive value of the selection parameter used in deciding switch-
ing between a simultaneous or separate approximation of the two terms in
the sensitivity right-hand side.

The return value flag (of type int) is one of:

CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode mem pointer is NULL.
CV_ILL_INPUT An argument has an illegal value.

Notes If DQrhomax = 0.0, then no switching is performed. The approximation is done simul-
taneously using either centered or forward finite differences, depending on the value of
DQtype. For values of DQrhomax > 1.0, the simultaneous approximation is used when-
ever the estimated finite difference perturbations for states and parameters are within
a factor of DQrhomax, and the separate approximation is used otherwise. Note that a
value DQrhomax < 1.0 will effectively disable switching. See §2.6 for more details.
The default value are DQtype=CV_CENTERED and DQrhomax= 0.0.

F2003 Name FCVodeSetSensDQMethod

’ CVodeSetSensErrCon ‘

Call flag = CVodeSetSensErrCon(cvode mem, errconS);

Description The function CVodeSetSensErrCon specifies the error control strategy for sensitivity
variables.

Arguments cvodemem (void *) pointer to the CVODES memory block.

Return value

Notes

F2003 Name

errconS (booleantype) specifies whether sensitivity variables are to be included
(SUNTRUE) or not (SUNFALSE) in the error control mechanism.

The return value flag (of type int) is one of:
CV_SUCCESS The optional value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

By default, errconsS is set to SUNFALSE. If errconS=SUNTRUE then both state variables
and sensitivity variables are included in the error tests. If errconS=SUNFALSE then
the sensitivity variables are excluded from the error tests. Note that, in any event, all
variables are considered in the convergence tests.

FCVodeSetSensErrCon

| CVodeSetSensMaxNonlinIters

Call

Description

Arguments

Return value

Notes
F2003 Name

flag = CVodeSetSensMaxNonlinIters(cvode mem, maxcorS);

The function CVodeSetSensMaxNonlinIters specifies the maximum number of nonlin-
ear solver iterations for sensitivity variables per step.

cvode mem (void *) pointer to the CVODES memory block.

maxcorS (int) maximum number of nonlinear solver iterations allowed per step (> 0).
The return value flag (of type int) is one of:

CV_SUCCESS The optional value has been successfully set.
CV_MEM NULL The cvode_mem pointer is NULL.
CV_MEM_FAIL The SUNNONLINSOL module is NULL.

The default value is 3.

FCVodeSetSensMaxNonlinIters

5.2 User-callable routines for forward sensitivity analysis 125

5.2.7 Optional outputs for forward sensitivity analysis

Optional output functions that return statistics and solver performance information related to forward
sensitivity computations are listed in Table 5.2 and described in detail in the remainder of this section.

| CVodeGetSensNumRhsEvals |

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = CVodeGetSensNumRhsEvals(cvode mem, &nfSevals);

The function CVodeGetSensNumRhsEvals returns the number of calls to the sensitivity
right-hand side function.

cvode mem (void *) pointer to the CVODES memory block.

nfSevals (long int) number of calls to the sensitivity right-hand side function.

The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.

CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.

In order to accommodate any of the three possible sensitivity solution methods, the
default internal finite difference quotient functions evaluate the sensitivity right-hand
sides one at a time. Therefore, nfSevals will always be a multiple of the number of

sensitivity parameters (the same as the case in which the user supplies a routine of type
CVSensRhs1Fn).

FCVodeGetSensNumRhsEvals

’ CVodeGetNumRhsEvalsSens ‘

Call

Description

Arguments

Return value

flag = CVodeGetNumRhsEvalsSens(cvode mem, &nfevalsS);

The function CVodeGetNumRhsEvalsSEns returns the number of calls to the user’s right-
hand side function due to the internal finite difference approximation of the sensitivity
right-hand sides.

cvode mem (void *) pointer to the CVODES memory block.

nfevalsS (long int) number of calls to the user’s ODE right-hand side function for
the evaluation of sensitivity right-hand sides.

The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.

Table 5.2: Forward sensitivity optional outputs

Optional output Routine name

No. of calls to sensitivity r.h.s. function CVodeGetSensNumRhsEvals

No. of calls to r.h.s. function for sensitivity CVodeGetNumRhsEvalsSens

No. of sensitivity local error test failures CVodeGetSensNumErrTestFails

No. of calls to lin. solv. setup routine for sens. | CVodeGetSensNumLinSolvSetups

Error weight vector for sensitivity variables CVodeGetSensErrWeights

No. of sens. nonlinear solver iterations CVodeGetSensNumNonlinSolvIters

No. of sens. convergence failures CVodeGetSensNumNonlinSolvConvFails

No. of staggered nonlinear solver iterations CVodeGetStgrSensNumNonlinSolvIters

No. of staggered convergence failures CVodeGetStgrSensNumNonlinSolvConvFails

126 Using CVODES for Forward Sensitivity Analysis

Notes This counter is incremented only if the internal finite difference approximation routines
are used for the evaluation of the sensitivity right-hand sides.

F2003 Name FCVodeGetNumRhsEvalsSens

’ CVodeGetSensNumErrTestFails
Call flag = CVodeGetSensNumErrTestFails(cvode mem, &nSetfails);

Description The function CVodeGetSensNumErrTestFails returns the number of local error test
failures for the sensitivity variables that have occurred.

Arguments cvodemem (void *) pointer to the CVODES memory block.
nSetfails (long int) number of error test failures.

Return value The return value flag (of type int) is one of:
CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if the sensitivity variables have been included in the
error test (see CVodeSetSensErrCon in §5.2.6). Even in that case, this counter is not
incremented if the ism=CV_SIMULTANEQUS sensitivity solution method has been used.

F2003 Name FCVodeGetSensNumErrTestFails

CVodeGetSensNumLinSolvSetups

Call flag = CVodeGetSensNumLinSolvSetups(cvode mem, &nlinsetupsS);

Description The function CVodeGetSensNumLinSolvSetups returns the number of calls to the linear
solver setup function due to forward sensitivity calculations.

Arguments cvode mem (void *) pointer to the CVODES memory block.
nlinsetupsS (long int) number of calls to the linear solver setup function.
Return value The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.
Notes This counter is incremented only if a nonlinear solver requiring a linear solve has been

used and if either the ism = CV_STAGGERED or the ism = CV_STAGGERED1 sensitivity
solution method has been specified (see §5.2.1).

F2003 Name FCVodeGetSensNumLinSolvSetups

’CVodeGetSensStats‘

Call flag = CVodeGetSensStats(cvodemem, &nfSevals, &nfevalsS, &nSetfails,
&nSetfails, &nlinsetupsS);

Description The function CVodeGetSensStats returns all of the above sensitivity-related solver
statistics as a group.
Arguments cvodemem (void *) pointer to the CVODES memory block.
nfSevals (long int) number of calls to the sensitivity right-hand side function.
(

long int) number of calls to the ODE right-hand side function for sensi-
tivity evaluations.

nfevalsS

nSetfails (long int) number of error test failures.
nlinsetupsS (long int) number of calls to the linear solver setup function.

5.2 User-callable routines for forward sensitivity analysis 127

Return value

F2003 Name

The return value flag (of type int) is one of:

CV_SUCCESS The optional output values have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.

FCVodeGetSensStats

CVodeGetSensErrWeights

Call

Description

Arguments

Return value

Notes
F2003 Name

flag = CVodeGetSensErrWeights(cvode mem, eSweight);

The function CVodeGetSensErrWeights returns the sensitivity error weight vectors at
the current time. These are the reciprocals of the W; of (2.8) for the sensitivity variables.

cvode mem (void *) pointer to the CVODES memory block.
eSweight (N_Vector *) pointer to the array of error weight vectors.

The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.
The user must allocate memory for eweightsS.

FCVodeGetSensErrWeights

| CVodeGetSensNumNonlinSolvIters |

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = CVodeGetSensNumNonlinSolvIters(cvode mem, &nSniters);

The function CVodeGetSensNumNonlinSolvIters returns the number of nonlinear iter-
ations performed for sensitivity calculations.

cvode mem (void *) pointer to the CVODES memory block.

nSniters (long int) number of nonlinear iterations performed.

The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.

CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.

CV_MEM_FAIL The SUNNONLINSOL module is NULL.

This counter is incremented only if ism was CV_STAGGERED or CV_STAGGERED1 (see
§5.2.1).

In the CV_STAGGERED1 case, the value of nSniters is the sum of the number of nonlinear
iterations performed for each sensitivity equation. These individual counters can be
obtained through a call to CVodeGetStgrSensNumNonlinSolvIters (see below).

FCVodeGetSensNumNonlinSolvIters

] CVodeGetSensNumNonlinSolvConvFails

Call

Description

Arguments

Return value

flag = CVodeGetSensNumNonlinSolvConvFails(cvode mem, &nSncfails);

The function CVodeGetSensNumNonlinSolvConvFails returns the number of nonlinear
convergence failures that have occurred for sensitivity calculations.

cvode mem (void *) pointer to the CVODES memory block.

nSncfails (long int) number of nonlinear convergence failures.

The return value flag (of type int) is one of:

128 Using CVODES for Forward Sensitivity Analysis
CV_SUCCESS The optional output value has been successfully set.
CV_MEM NULL The cvode_mem pointer is NULL.
CV_NO_SENS Forward sensitivity analysis was not initialized.

Notes This counter is incremented only if ism was CV_STAGGERED or CV_STAGGERED1 (see
§5.2.1).
In the CV_STAGGERED1 case, the value of nSncfails is the sum of the number of non-
linear convergence failures that occurred for each sensitivity equation. These individual
counters can be obtained through a call to CVodeGetStgrSensNumNonlinConvFails
(see below).

F2003 Name FCVodeGetSensNumNonlinSolvConvFails

’CVodeGetSensNonlinSoletats

Call
Description

Arguments

Return value

F2003 Name

flag = CVodeGetSensNonlinSolvStats(cvode mem, &nSniters, &nSncfails);

The function CVodeGetSensNonlinSolvStats returns the sensitivity-related nonlinear
solver statistics as a group.

cvode mem (void *) pointer to the CVODES memory block.
nSniters (long int) number of nonlinear iterations performed.
nSncfails (long int) number of nonlinear convergence failures.
The return value flag (of type int) is one of:

CV_SUCCESS The optional output values have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.
CV_MEM_FAIL The SUNNONLINSOL module is NULL.

FCVodeGetSensNonlinSolvStats

CVodeGetStgrSensNumNonlinSolvIters

Call

Description

Arguments

Return value

Notes
F2003 Name

flag = CVodeGetStgrSensNumNonlinSolvIters(cvode mem, nSTGRlniters);

The function CVodeGetStgrSensNumNonlinSolvIters returns the number of nonlinear
iterations performed for each sensitivity equation separately, in the CV_STAGGERED1 case.

cvode_mem (void *) pointer to the CVODES memory block.

nSTGR1niters (long int *) an array (of dimension Ns) which will be set with the
number of nonlinear iterations performed for each sensitivity system
individually.

The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.
The user must allocate space for nSTGRiniters.

FCVodeGetStgrSensNumNonlinSolvIters

’ CVodeGetStgrSensNumNonlinSolvConvFails

Call

Description

flag = CVodeGetStgrSensNumNonlinSolvConvFails(cvode mem, nSTGRincfails);

The function CVodeGetStgrSensNumNonlinSolvConvFails returns the number of non-
linear convergence failures that have occurred for each sensitivity equation separately,
in the CV_STAGGERED1 case.

5.3 User-supplied routines for forward sensitivity analysis 129

Arguments cvode_mem (void *) pointer to the CVODES memory block.

nSTGRincfails (long int *) an array (of dimension Ns) which will be set with the
number of nonlinear convergence failures for each sensitivity system
individually.

Return value The return value flag (of type int) is one of:

CV_SUCCESS The optional output value has been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.
Notes The user must allocate space for nSTGR1ncfails.

F2003 Name FCVodeGetStgrSensNumNonlinSolvConvFails

CVodeGetStgrSensNonlinSolvStats

A

Call flag = CVodeGetStgrSensNonlinSolvStats(cvode mem, &nSTRGiniters, &nSTGR1incfails);

Description = The function CVodeGetStgrSensNonlinSolvStats returns the number of nonlinear it-
erations and convergence failures that have occurred for each sensitivity equation sep-
arately, in the CV_STAGGERED1 case.

Arguments cvode_mem (void *) pointer to the CVODES memory block.

nSTGR1niters (long int *) an array (of dimension Ns) which will be set with the
number of nonlinear iterations performed for each sensitivity system
individually.

nSTGR1ncfails (long int *) an array (of dimension Ns) which will be set with the
number of nonlinear convergence failures for each sensitivity system
individually.

Return value The return value flag (of type int) is one of:

CV_SUCCESS The optional output values have been successfully set.
CV_MEM_NULL The cvode_mem pointer is NULL.

CV_NO_SENS Forward sensitivity analysis was not initialized.
CV_MEM_FAIL The SUNNONLINSOL module is NULL.

F2003 Name FCVodeGetStgrSensNonlinSolvStats

5.3 User-supplied routines for forward sensitivity analysis

In addition to the required and optional user-supplied routines described in §4.6, when using CVODES
for forward sensitivity analysis, the user has the option of providing a routine that calculates the
right-hand side of the sensitivity equations (2.12).

By default, CVODES uses difference quotient approximation routines for the right-hand sides of the
sensitivity equations. However, CVODES allows the option for user-defined sensitivity right-hand side
routines (which also provides a mechanism for interfacing CVODES to routines generated by automatic
differentiation).

5.3.1 Sensitivity equations right-hand side (all at once)

If the CV_SIMULTANEQOUS or CV_STAGGERED approach was selected in the call to CVodeSensInit or
CVodeSensInitl, the user may provide the right-hand sides of the sensitivity equations (2.12), for all
sensitivity parameters at once, through a function of type CVSensRhsFn defined by:

130 Using CVODES for Forward Sensitivity Analysis

CVSensRhsFn

Definition typedef int (*CVSensRhsFn) (int Ns, realtype t,
N_Vector y, N_Vector ydot,
N_Vector *yS, N_Vector *ySdot,
void *user_data,
N_Vector tmpl, N_Vector tmp2);

Purpose This function computes the sensitivity right-hand side for all sensitivity equations at
once. It must compute the vectors (9f/0y)s;(t)+ (0 f/0p;) and store them in ySdot [i].
Arguments Ns is the number of sensitivities.
t is the current value of the independent variable.
y is the current value of the state vector, y(t).
ydot is the current value of the right-hand side of the state equations.
yS contains the current values of the sensitivity vectors.

ySdot is the output of CVSensRhsFn. On exit it must contain the sensitivity right-
hand side vectors.

user_data is a pointer to user data, the same as the user_data parameter passed to
CVodeSetUserData.

tmpl
tmp2 are N_Vectors of length NV which can be used as temporary storage.

Return value A CVSensRhsFn should return 0 if successful, a positive value if a recoverable error oc-
curred (in which case CVODES will attempt to correct), or a negative value if it failed
unrecoverably (in which case the integration is halted and CV_SRHSFUNC_FAIL is re-
turned).

Notes A sensitivity right-hand side function of type CVSensRhsFn is not compatible with the
CV_STAGGERED1 approach.

Allocation of memory for ySdot is handled within CVODES.

There are two situations in which recovery is not possible even if CVSensRhsFn func-
tion returns a recoverable error flag. One is when this occurs at the very first call to
the CVSensRhsFn (in which case CVODES returns CV_FIRST_SRHSFUNC_ERR). The other
is when a recoverable error is reported by CVSensRhsFn after an error test failure,
while the linear multistep method order is equal to 1 (in which case CVODES returns
CV_UNREC_SRHSFUNC_ERR).

5.3.2 Sensitivity equations right-hand side (one at a time)

Alternatively, the user may provide the sensitivity right-hand sides, one sensitivity parameter at a
time, through a function of type CVSensRhs1Fn. Note that a sensitivity right-hand side function of
type CVSensRhs1Fn is compatible with any valid value of the argument ism to CVodeSensInit and
CVodeSensInitl, and is required if ism = CV_STAGGERED1 in the call to CVodeSensInitl. The type
CVSensRhs1Fn is defined by

CVSensRhs1Fn

Definition typedef int (*CVSensRhs1Fn) (int Ns, realtype t,
N_Vector y, N_Vector ydot,
int iS, N_Vector yS, N_Vector ySdot,
void *user_data,
N Vector tmpl, N_Vector tmp2);

Purpose This function computes the sensitivity right-hand side for one sensitivity equation at a
time. It must compute the vector (9f/0y)s;(t) + (0f/0p;) for i = iS and store it in
ySdot.

5.4 Integration of quadrature equations depending on