See the file INSTALL for installation instructions.

Contents:
    NAME
    SYNOPSIS
    DESCRIPTION
    ALGORITHM
    EXAMPLES
    METHODS
    LIMITATIONS
    SEE ALSO
    VERSION
    AUTHOR
    LICENSE
    DISCLAIMER

NAME
    Statistics::LineFit - Least squares line fit, weighted or unweighted

SYNOPSIS
     use Statistics::LineFit;
     $lineFit = Statistics::LineFit->new();
     $lineFit->setData (\@xValues, \@yValues) or die "Invalid data";
     ($intercept, $slope) = $lineFit->coefficients();
     defined $intercept or die "Can't fit line if x values are all equal";
     $rSquared = $lineFit->rSquared();
     $meanSquaredError = $lineFit->meanSqError();
     $durbinWatson = $lineFit->durbinWatson();
     $sigma = $lineFit->sigma();
     ($tStatIntercept, $tStatSlope) = $lineFit->tStatistics();
     @predictedYs = $lineFit->predictedYs();
     @residuals = $lineFit->residuals();

DESCRIPTION
    The Statistics::LineFit module does weighted or unweighted least-squares
    line fitting to two-dimensional data (y = a + b * x). (This is also
    called linear regression.) In addition to the slope and y-intercept, the
    module can return the square of the correlation coefficient (R squared),
    the Durbin-Watson statistic, mean squared error, sigma, t statistics,
    predicted y values and residuals of the y values. See the METHODS
    section for a description of these statistics. See the SEE ALSO section
    for a comparison of this module to Statistics::OLS.

    The module accepts input data in separate x and y arrays or a single 2-D
    array (an array of arrayrefs). The optional weights are input in a
    separate array. The module can optionally verify that the input data and
    weights are valid numbers. If weights are input, the following
    statistics are weighted: the correlation coefficient, the Durbin-Watson
    statistic, the mean squared error, sigma and the t statistics.

    The module is state-oriented and caches its results. Once you call the
    setData() method, you can call the other methods in any order or call a
    method several times without invoking redundant calculations.

    The regression fails if the x values are all the same. This is an
    inherent limit to fitting a line of the form y = a + b * x. In this
    case, the module issues an error message and methods that return
    statistical values will return undefined values. You can also use the
    return value of the regress() method to check the status of the
    regression.

    The decision to use or not use weighting could be made using your a
    priori knowledge of the data or using supplemental data. In the presence
    of non-random noise weighting can degrade the solution. Weighting is a
    good option if some points are suspect or less relevant (e.g., older
    terms in a time series, data from a suspect source).

ALGORITHM
    The least-square line is the line that minimizes the sum of the squares
    of the y residuals:

     Minimize SUM((y[i] - (a + b * x[i])) ** 2)

    Setting the parial derivatives of a and b to zero yields a solution that
    can be expressed in terms of the means, variances and covariances of x
    and y:

     b = SUM((x[i] - meanX) * (y[i] - meanY)) / SUM((x[i] - meanX) ** 2) 

     a = meanY - b * meanX

    Note that a and b are undefined if all the x values are the same.

    If you use weights, each term in the above sums is multiplied by the
    value of the weight for that index. The program normalizes the weights
    so that the sum of the weights equals the number of points; this
    minimizes the differences between the weighted and unweighted equations.

    Statistics::LineFit uses equations that are mathematically equivalent to
    the above equations and computationally more efficient. The module runs
    in O(N) (linear time).

EXAMPLES
  Alternate calling sequence:
     use Statistics::LineFit;
     $lineFit = Statistics::LineFit->new();
     $lineFit->setData(\@x, \@y) or die "Invalid regression data\n";
     if (defined $lineFit->rSquared()
         and $lineFit->rSquared() > $threshold) 
     {
         ($intercept, $slope) = $lineFit->coefficients();
         print "Slope: $slope  Y-intercept: $intercept\n";
     }

  Multiple calls with the same object, validate input:
     use Statistics::LineFit;
     $lineFit = Statistics::LineFit->new(1);
     while (1) {
         @xy = read2Dxy();  # User-supplied subroutine
         last unless @xy;
         next unless $lineFit->setData(\@xy);
         ($intercept, $slope) = $lineFit->coefficients();
         if (defined $intercept) {
             print "Slope: $slope  Y-intercept: $intercept\n";
         } 
     }

METHODS
    The module is state-oriented and caches its results. Once you call the
    setData() method, you can call the other methods in any order or call a
    method several times without invoking redundant calculations.

    The regression fails if the x values are all the same. In this case, the
    module issues an error message and methods that return statistical
    values will return undefined values. You can also use the return value
    of the regress() method to check the status of the regression.

  new() - create a new Statistics::LineFit object
     $lineFit = Statistics::LineFit->new();
     $lineFit = Statistics::LineFit->new($validate);
     $lineFit = Statistics::LineFit->new($validate, $hush);

     $validate = 1 -> Verify input data is numeric (slower execution)
                 0 -> Don't verify input data (default, faster execution)
     $hush = 1 -> Suppress error messages
           = 0 -> Enable warning messages (default)

  coefficients() - Return the slope and y intercept
     ($intercept, $slope) = $lineFit->coefficients();

    The returned list is undefined if the regression fails.

  durbinWatson() - Return the Durbin-Watson statistic
     $durbinWatson = $lineFit->durbinWatson();

    The Durbin-Watson test is a test for first-order autocorrelation in the
    residuals of a time series regression. The Durbin-Watson statistic has a
    range of 0 to 4; a value of 2 indicates there is no autocorrelation.

    The return value is undefined if the regression fails. If weights are
    input, the return value is the weighted Durbin-Watson statistic.

  meanSqError() - Return the mean squared error
     $meanSquaredError = $lineFit->meanSqError();

    The return value is undefined if the regression fails. If weights are
    input, the return value is the weighted mean squared error.

  predictedYs() - Return the predicted y values
     @predictedYs = $lineFit->predictedYs();

    The returned list is undefined if the regression fails.

  regress() - Do the least squares line fit (if not already done)
     $lineFit->regress() or die "Regression failed"

    You don't need to call this method because it is invoked by the other
    methods as needed. You can call regress() at any time to get the status
    of the regression for the current data.

  residuals() - Return predicted y values minus input y values
     @residuals = $lineFit->residuals();

    The returned list is undefined if the regression fails.

  rSquared() - Return the square of the correlation coefficient
     $rSquared = $lineFit->rSquared();

    R squared, also called the square of the Pearson product-moment
    correlation coefficient, is a measure of goodness-of-fit. It is the
    fraction of the variation in Y that can be attributed to the variation
    in X. A perfect fit will have an R squared of 1; fitting a line to the
    vertices of a regular polygon will yield an R squared of zero. Graphical
    displays of data with an R squared of less than about 0.1 do not show a
    visible linear trend.

    The return value is undefined if the regression fails. If weights are
    input, the return value is the weighted correlation coefficient.

  setData() - Initialize (x,y) values and optional weights
     $lineFit->setData(\@x, \@y) or die "Invalid regression data";
     $lineFit->setData(\@x, \@y, \@weights) or die "Invalid regression data";
     $lineFit->setData(\@xy) or die "Invalid regression data";
     $lineFit->setData(\@xy, \@weights) or die "Invalid regression data";

    If the new() method was called with validate = 1, setData() will verify
    that the data and weights are valid numbers. @xy is an array of
    arrayrefs; x values are $xy[$i][0], y values are $xy[$i][1]. The module
    does not access any indices greater than $xy[$i][1], so the arrayrefs
    can point to arrays that are longer than two elements.

    The optional weights array must be the same length as the data arrays.
    The weights must be non-negative numbers. Only the relative sizes of the
    weights is significant: the program normalizes the weights so that the
    sum of the weights equals the number of points. If you want to do
    multiple line fits using the same weights, the weights must be passed to
    each call to setData().

    Once you successfully call setData(), the next call to any method other
    than new() or setData() invokes the regression.

  sigma() - Return the standard error of the estimate
    $sigma = $lineFit->sigma();

    Sigma is an estimate of the homoscedastic standard deviation of the
    error. Sigma is also known as the standard error of the estimate.

    The return value is undefined if the regression fails. If weights are
    input, the return value is the weighted standard error.

  tStatistics() - Return the t statistics
     (tStatIntercept, $tStatSlope) = $lineFit->tStatistics();

    The t statistic, also called the t ratio or Wald statistic, is used to
    accept or reject a hypothesis using a table of cutoff values computed
    from the t distribution. The t-statistic suggests that the estimated
    value is (reasonable, too small, too large) when the t-statistic is
    (close to zero, large and positive, large and negative).

    The returned list is undefined if the regression fails. If weights are
    input, the returned values are the weighted t statistics.

LIMITATIONS
    The module cannot fit a line to a set of points that have the same x
    values. This is an inherent limit to fitting a line of the form y = a +
    b * x. As the sum of the squared deviations of the x values approaches
    zero, the module's results becomes sensitive to the precision of
    floating point operations on the host system.

    If the x values are not all the same and the apparent "best fit" line is
    vertical, the module will fit a horizontal line. For example, an input
    of (1, 1), (1, 7), (2, 3), (2, 5) returns a slope of zero, an intercept
    of 4 and an R squared of zero. This is correct behavior because this
    line is the best least-squares fit to the data for the given
    parameterization (y = a + b * x).

    On a 32-bit system the results are accurate to about 11 significant
    digits, depending on the input data. Many of the installation tests will
    fail on a system with word lengths of 16 bits or fewer. (You might want
    to upgrade your old 80286 IBM PC.)

SEE ALSO
     Mendenhall, W., and Sincich, T.L., 2003, A Second Course in Statistics:
       Regression Analysis, 6th ed., Prentice Hall.
     The man page for perl(1).
     The CPAN modules Statistics::OLS, Statistics::GaussHelmert and 
       Statistics::Regression.

    Statistics::LineFit is simpler to use than Statistics::GaussHelmert or
    Statistics::Regression. Statistics::LineFit was inspired by and borrows
    some ideas from the venerable Statistics::OLS module. The significant
    differences between Statistics::LineFit and Statistics::OLS are:

    Statistics::LineFit is more robust.
        Statistics::OLS returns incorrect results for certain input
        datasets. Statistics::OLS does not deep copy its input arrays, which
        can lead to subtle bugs. The Statistics::OLS installation test has
        only one test and does not verify that the regression returned
        correct results. In contrast, Statistics::LineFit has over 200
        installation tests that use various datasets/calling sequences to
        verify the accuracy of the regression to within 1.0e-10.

    Statistics::LineFit is faster.
        For a sequence of calls to new(), setData(\@x, \@y) and regress(),
        Statistics::LineFit is faster than Statistics::OLS by factors of
        2.0, 1.6 and 2.4 for array lengths of 5, 100 and 10000,
        respectively.

    Statistics::LineFit can do weighted or unweighted regression.
        Statistics::OLS lacks this option.

    Statistics::LineFit has a better interface.
        Once you call the Statistics::LineFit::setData() method, you can
        call the other methods in any order and call methods multiple times
        without invoking redundant calculations. Statistics::LineFit lets
        you enable or disable data verification or error messages.

    Statistics::LineFit has better code and documentation.
        The code in Statistics::LineFit is more readable, more object
        oriented and more compliant with Perl coding standards than the code
        in Statistics::OLS. The documentation for Statistics::LineFit is
        more detailed and complete.

VERSION
    This document describes Statistics::LineFit version 0.03. The comments
    about Statistics::OLS refer to version 0.07 of that module.

AUTHOR
    Richard Anderson, cpan(AT)richardanderson(DOT)org,
    http://www.richardanderson.org

LICENSE
    This program is free software; you can redistribute it and/or modify it
    under the same terms as Perl itself.

    The full text of the license can be found in the LICENSE file included
    in the distribution and available in the CPAN listing for
    Statistics::LineFit (see www.cpan.org or search.cpan.org).

DISCLAIMER
    To the maximum extent permitted by applicable law, the author of this
    module disclaims all warranties, either express or implied, including
    but not limited to implied warranties of merchantability and fitness for
    a particular purpose, with regard to the software and the accompanying
    documentation.